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INTRODUCTION TO FINITE ELEMENT BASICS 

A.J. MORRIS 

Professor of Computational Structural Analysis 

College of Aeronautics, 

Cranfield Institute of Technology, 

Cranfield, 

Bedford. 

MK43 OAL '     '- ' 

U.K. 

1.      PHILOSOPHY 

The task we are setting ourselves is that of solving a complex structural design 
problem which lies beyond the scope of classical closed form mathematical solution.  If we 
have a digital computer at our disposal we would be well advised to employ it and, because 
of the nature of the digital process, we will reguire an approximate solution technique. 
In addition, we would want to choose our new technique to suit the special properties of 
the computer.  We require, in fact, a solution technique which is numerically stable, 
easily programmed and can be adapted to a wide range of problem types without excessive 
interference by the user.  From a structural viewpoint the finite element method provides 
the most satisfactory solution technique in this category. 

The essence of the finite element method involves dividing the structure into a 
suitable number of small pieces called finite elements.  The intersections of the sides of 
the elements occur at nodal points or nodes and the interfaces between elements are called 
nodal lines and nodal planes.  Often we may need to introduce additional node points along 
the nodal lines or planes.  For structural problems involving static or dynamic applied 
loads we will be defining the behaviour of the structure in terms of displacements and/or 
stresses.  Within each of our elements we need to select a pattern or shape for the unknown 
displacement or stress.  In the case of a displacement field the shape function defines the 
behaviour of displacements within an element in terms ofunknown  quantities specified at the 
element nodes.  These nodal values are known as nodal connection quantities and allow the 
deformation behaviour in one element to be communicated to adjacent elements.  In the case 
of an assumed stress field in the element the connection quantities are different but the 
underlying principle is the same. 

At once we see some of the power of the finite element method because, for a 
specific element type (beam, plate, shell, etc.), the shape functions are identical for 
each element.  Thus, a given element need only be programmed once and the computer can 
repeat the operations specified for one, general, element as often as required. 

The structure is clearly going to be modelled by an assemblage of finite elements 
but this introduces a number of problems which need resolving.  How does one actually 
numerically define a finite element in terms suitable for the computer?  How do we select 
elements which will be accurate enough to adequately represent the structural behaviour? 
How does one apply the design loads in a finite element analysis?  How do we select the 
correct    connection quantities?  How do we tell the computer to assemble a collection of 
individual elements so that the actual structural behaviour represented  is modelled?  The 
answer to these and other problems represent the 'Rules of the Game' for the finite element 
method.  The engineer conversant with these 'Rules' is equipped to use the finite element 
method for the solution of real industrial based design problems.  Furthermore, he is able 
to use effectively the major structural analysis finite element programs such a's NASTRAN, 
PAFEC , FINEL ASAS, which have become a routine part of structural analysis in all major 
industries.  These 'Rules' and their explanation form the basis of the current course. 

1 .1     Element types 

Thus we have seen that the essence of the finite element method is to use a 
piecewise continuous approximating function.  As already indicated the selection of the 
terms to be approximated dictates the connection quantities: 

(i) Displacement Elements  -  these are usual elements found in the major system 
commonly employed to perform structural analyses.  In this case the displacement 
field at all points on the interior and the boundary of the element is approximated 
in terms of a low order polynomial.  As we shall see this gives rise to connection 
quantities in terms of displacements and their derivatives defined at nodes on the 
element boundary. 
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(ii) Equilibrium Elements  -  for this element the stresses, usually defined in terms of 
stress functions,are approximated by low order polynomials.  The result of this 
operation is to give rise to side connection quantities.  These can be awkward to 
handle and it is sometimes possible to produce displacement type connection 
quantities.  Providing the procedure for creating such connections is properly 
followed the resulting elements are still pure equilibrium elements. 

(iii) Hybrid Elements  -  these elements use two separate approximating fields to 
describe the elements behaviour usually employing one approximating scheme for the 
interior of the elementwith a second being employed on the boundary.  For example, 
the stresses on the interior might be approximated by one set of polynomials with 
a line approximation.being made to displacements along the element boundary.  This 
second displacement field is, in fact, playing the role of a Lagrange multiplier 
which is attempting to preserve continuity of stress across the element boundaries. 
In this case the connectors are displacements and/or  their derivatives at  specific 
nodes on the element boundary. 

1.2 The Direct Approach 

The earliest development of the finite element method involved the use of matrix 
methods on, essentially, simple structural forms.  This process required that the main 
matrices and vectors were built-up stage by stage using elasticity  theory as the basic 
template.  The method does not require variational and other principles which latter 
became a feature of the finite element method and, thus, it became known as the Direct 
Approach. 

We shall use the Direct Approach to give an overview of the main features of the 
finite element method in an illustrative rather than rigorous manner. 

2. THE ELEMENT STIFFNESS MATRIX 

To begin, take a simple spring, as shown in Fig.2.1, where the displacements at the 
two end nodes are given by A , A„ and the corresponding forces by P-j and P2. 

nojel node Z 

^5 
'A, 

P. 

Figure 2.1 

Hookes law for this structure gives 

P, 1 

kCA^-A^) 

where k is the stiffness of the spring. 

Using matrix notation 

P  =  k . A 

The stiffness matrix k has two important properties which are clearly demonstrated, that 
is, it is both Symmetric and Singular. 

In order to start the process of generalisation we write k in the form 

11 M2 

M2 22 

Thus k.. represents a stiffness coefficient equal to the force required at node 1 to 
produce a unit deflection at node 1.  Similarly, k._ is the force required at node 1 (or 2) 
to produce a unit deflection at node 2 (or 1). 

Our next example involves the linear axial shown at Fig.2.2.  The principle for 
developing the stiffness  matrix is identical to that of the above linear spring where 

Hence 

AE 
L 

AE 
L 

r 1 
(2.1) 
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2.1 Co-ordinate Transformation 

So far we have tacidly assumed that the co-ordinates of the bar and the co-ordinate 
system in which the bar is embedded are the same.  This situation will not normally 
prevail and we must consider the bar situated in a non-coincidental co-ordinate system. 
For convenience we shall take a two-dimensional Cartesian co-ordinate system and consider 
the bar situated as shown in Fig.5.  The bar now has two forces and displacements associated 
with each of the two end nodes.  The associated stiffness matrix must be a 4x4 matrix as 
opposed to the 2x2 matrix.  Thus the relationship between the     forces F. and the 
displacements 6^ are given via the 4x4 stiffness thus ^ 

ff,^ fk 11 12 
<22 

13 

^33 

14 hi 
24 

34 
' 

44^ i\) 
In  order to evaluate the terms kj^^ we recall that these represent the forces associated 
with unit nodal displacements.  Thus to find k]^ we set 6-)=1 and 62 = 63 = 6^ = 0, as shown in 
Fig.2.4.  Then the strain in the bar is given by 6-|Cos0/L which for 6-|=T becomes cos9/L. 
Hookes law now gives the force in the bar 

n     EAcosG 

3 
F,.S., 

/ F,:^ 

1.«x   y^ 

F..S, 

 ¥• 

S,= I 

Figure 2.3 Figure 2.4 

We can now resolve P into components F. sic: 
2 ^ c                 □ . n    EAcos 6 F^  =  Pcos0 =   j  

2 

etc. 

PsinG = EAcosSsin 

There fore, 

EAcos 9 
L 

12 

etc. 

21 
EAcos8sin0 

Hence 
AE 
L 

cos 0    cos0sin0 
. 2 sin 

SYM 

cos 0 -  cos0sin0 
2 

cos0sin0  - sin 0 
2 

cos     cos0sin0 

sin 0 

which is simply the earlier 2x2 transformed into the x-y co-ordinate system. In fact a 
transformation of this type may be achieved by pre and post multiplying the 2x2 matrix by 
a transformation matrix.  In order to demonstrate this, consider two systems shown in 
Fig.2.5 where Pj^, Aj^, 1 = 1,2 represent the FE nodal forces and displacements in the local 
bar system whilst Fj^, 6^, 1=1,2,3,4 represent the same terms in the global (x,y) system. 
Thus we have 6-| = A'jcosG, 62 = A-|sin0, 63 = A2cos0, 64 = A2Sin0. 
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Hence hi 
'2 

«3 
> r < 

KJ 

'cosQ 0 ] 

sin9 0 It 

0 cosB [1' 
0 sinG 

Figure 2.5 

F5.&3 

and 

'': 

v^. 

fcosO 0 1 

sine 0 

0 cosG 

0 sine 

Now going back to the original element formulation 

L 

1  -1 

1   1 
2) "  I '    'J ("2j 

and pre-multiplying by the transformation matrix 

fcose 0 1 

sine 0 

0 cos6 

0 sine 

1 

.^. 

AE 

cos8 0  ^ 

sine 0 (  ' -1 

0 cose i^-' 1 

0 sine 

if we substitute for A A. using the transformation given above: 

:^. 

1  -1  cose  sine   0     0 

1   1 n 0     0    cos8   sine 

2.2 

fcos 6 cose 

AE 
L 

sinB 
■ 2„ sin 0 

Generalised Co-Ordinate Transformation 

cos 

cosesinG 

cose   sine^ 
■ 2„ sin e 

(s^^ 

cos e  cosG sinG 
• 2„ sin W 

> < 

The previous section illustrated that co-orinate transformation can be achieved in a 
relatively simple manner.  However we would like to reformulate this process in a manner 
more suitable for computer implementation.  For convenience we shall employ the notation 
shown in Fig.2.6 . 
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1111 Thus   taking   x,y,v,u   as   the   global   system   and   x   ,y   ,v   ,u     as   the   local   system   the 
transformation   between   the   two   is   given   by   the   equations 

1 
ucosa  +  vsina 

vsina   +   vcosa 

Thus 
cosa       sma I  j u 

•sina        cosal    Iv 

or 
d^ Td 

where T is the transformation matrix 

cosa   sina 

I-sina  cosaI 

If we now consider a bar element with nodes (1) and (2) as shown in Fig.2.6 then 

and 

where 

with 

d' =   < > and d = < 

'"1" 

^^ 
"2 

72 
d^ = Td 

"1 T 

I'cos 

Aj \ 

sina 
A = 

1-sin cosa 

For three dimensions the matrix A becomes a 3x3 matrix and other terms will appear if we 
have bending as opposed to tension elements. 

The matrix T is orthogonal and thus 

^ ■?-'■= T^ / • .."^ 

therefore 

T^d^ 

Thus the stiffness matrix can be transformed from local to global co-ordinates, to perform 
this transofrmation we start with (2.1) written in global co-ordinates and in the notation 
of this section:- 

kd   =  p 

In order to convert the load and nodal variables we use the above transformation matrix 
thus 

?t:;1    .  ~1 T d   and  p Tp 

thus   Tkd Tp 

and then 

Tkl^d^ 

thus  TkT*^ 

or 

~1 
P 

^-'v.\^^y' T^kh 

and transformation for the element stiffness matrix from local to global co-ordinates is 
given by 

k  = TtkiT 



1-6 

2.3    Assembling Elements 

Now that we can transform an element from a local to a global co-ordinate system we 
can think in terms of assembling a group of elements to represent the behaviour of a 
structure.  Consider the spring assemblage shown in Fig.2.7 consisting of 6 springs and 
6 nodes with 12 degrees of freedom.  In order to see how the 6 individual elements are 
assembled into a global representation we need only consider what happends when we take 2 
elements with a common mode.  To this purpose we take elements (1) and (2) which share a 
common node at 4. ■ 

i<..P. «5.P» ."s.Ps Figure 2.7 

<»^ n>C^ 

"•o,»^o 

^n,Pn 

Ua > f|2 

Cii   oO'i 
»  ) 'i 

''*4    >   t- 

I 
2. I      * 

V^.F,"-' 

1 ! £ I 3 
;    I 

fe' 
W 

-12, 

A^semblirxg 

7 

13 

A3 

a") 

a.3 

s 

JuW 

10 11 

i < u.> = - 

Us 

U4 

Us 

Us 

U<, 

U.I 

U,2 

-f 

-p. C£> 

O-'i 
^: 

-pft-pj' 

>- 
— < 

? 

p. 

R 

FIGURE   2.8 
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In Fig.2.7 we have shown the two elements separated put from the tptal assemblagt 
ith their own independent load and displacement system P.^^',   P«(i), P3   i P^^""^' etc. 

with i-1'or 2 dependent upon the element 

In assembling the global stiffness matrix we must add into the 12x12 matrix, which 
relates the load P']...P-]2 to the displacements u-\...u^y,    the individual 4xA stiffness 
matrices for each of the elements such as (1) and (2).  Thus we look at node 4 .nd observe 
that 

(1) (2) 

(1)  ^    (2) 
4        4 

which requires that the appropriate contributions from the individual element stiffness 
matrices are added 

•^31    1       32    2 
k  (•'^ (^^ 
33    3 34    4 

(2)^ (2) ^ ^  (2)  (2) 
•^31    1       32   ^2 

k  ^2)v (2) 
"33   ^3 34    4 

or   in   global   terms,   since V (2) (1)        ^ (1) . V (2) 
1    " ^1' ^2   " 2>    3      *3 

u • V (■'^ - V (2) 
^7' *4    " \ 

^7  "  '^31    1   "^32    ^2 ^ ^'^33      33   ^   7 ^ ^^34      34   '   ^8 

+ k  ^2) u  ^ k  (2) 
•^31    ^3   '^32    "4 

and similarly for Pp.  When these are transcribed into the global stiffness matrix we 
obtain the form shown in Fig.2.8.  By proceeding in an identical manner for each of the 
nodes, the full global stiffness matrix and load vector are assembled.  In reality the 
load vector contains the actual loads on the structure and is not assembled in the manner 
shown. 

2.4 Incorporation of Boundary Conditions 

Having assembled the global stiffness matrix and load vector we are still not in a 
position to solve for the unknown global displacements.  We must now apply the boundary 
conditions which form part of the problem definition and which also fix the structure in 
space and prevent rigid body rotation.  It is worth noting that if all the rigid body 
modes are not fixed then the element and global stiffness matrices are singular.  Once the 
boundary conditions are prescribed the structural analysis problem can be solved by 
inversion of the global stiffness matrix or by employing some other equation solving 
procedure. 

As we have seen throughout  our developments of the F-E method because we are dealing 
with a displacement formulation, we can only specify boundary conditions on the boundary 
Sy.  In the F-E method these conditions are defined in terms of specified nodal displacemen-ts 
which may be zero if the structure is attached to a rigid support or may be non-zero if 
some movememnt of the supports or attachment points is specified. 

In order to demonstrate the procedure for specifying boundary displacements and the 
subsequent procedures for solvi^ng we divide the global displacement vector by partitioning 
into free nodal displacements U and specified displacements U*.  The global stiffness 
matrix and load vector must also be similarly partitioned thus 

11 

■21 

where the vector P* represent the reactions at the nodes where the displacements U* are 
specified. 

Expanding 

K„U  .  K^^U 

K^^U  +  K22U*  =  P* 
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Since the displacements U are the only unknowns then we can solve for these to give: 

and the reactions are given by: 

If     U  =  0  then we have 

P* =  ^2/11"'^ 

Although for convenience we have assumed that the specified terms in the displacement 
vector are situated at the bottom of the vector column.  In reality, this situation will 
never arise^and could only be achieved by re-numbering the structure.  However, for the 
case when U  =0 the scatering of the components of U  within the displacement vector, 
causes no computational problem^^ All we do is simply remove each row and column 
associated with each component U^^^r 0.  Thus for each i we delete the ith row and column 
from the global stiffness matrix K but preserve in store the terms for the matrix K.„ to 
allow for subsequent recovery of the reactions.  The way in which this is handled for our 
spring problem is shown in Fig.2.9. 

^* 
ent technique is available for the case when U iO   in this case zero's 
appropriate rows and columns of K and a 1 placed on the diagonal.  Thus:- 

An equival 
are placed in the 

then 

and 

Lf U . . is 

Ji 

prescribed as V 

J. . 
ij 

0 for i / j and = 1,2, 

This is ba 
This operation is 

lanced by replacing Pj^ in the load vector by P^ 
equivalent to a partitioned matrix 

K. .U 
1 ] 

for i 1,^ 

K,^  0 

1^ 

IP - K^2 f 

In order to remove the singularity property for the simple problem, we must 
prescribe some of the displacements U1...U12 and for the present example the displacements 
Ui through Ug are zero because the structure is rigidly held at these points as shown in 
Fig.2.9.  Because these are zero conditions we can employ 2.5 and delete the row and 
column associated with each prescribed displacement.  This deflated matrix is no longer 
singular and the problem can now be solved to yield values for the unknown displacements 
U7 to U12 and values for the unknown reactions P-| to P6. 
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Boundary Conditions 

(^ Lr-  K r /             y             y             y             y               v               v       \ fll     ^ (v     ^ 
1 12 13 1A 15 16           1/        "^Ib           19           IIU           111           -Wi "T ^^ 

^2 ^2 ^1 

'33 

'44 

55 

< 

SYM 

'66 

'<77       .   -                                  ,   ^ 

'<88 

•^110 

•^111 

'^112^ 

It 

II 

M 

II 

II 

^^12^ 

>=< 

It 

p 

> 

Figure 2.9 

3.     THE DISPLACEMENT FINITE ELEMENT FORMULATION 

Although the direct method shows all the main steps which a finite element system 
passes through in achieving a solution to a structural analysis problem certain very 
important aspects of element development cannot be covered by this approach.  For example, 
we have no way of deciding what connection quantities are appropriate to a specific 
element.  Nor can we compute the load vectors for the element when subjected to external 
forces.  The direct approach does not provide any information concerning the generation of 
more general element stiffness matrices. ■-■(,. 

The way around these difficulties is to employ one of the oldest techniques 
available to the applied mechanics specialist - the variational method.  Unfortunately, 
time does not allow us to explore this interesting method and show its full power.  This 
may be fortunate since the full intricaces of the method do require careful study and can 
be difficult to understand.  However, if we concentrate on developing and applying 
displacement elements only we can exploit this method to achieve the above stated 
requirements without too much strain. 

For displacement elements the variational formulation devolves down to requiring 
the potential energy functional which can then be differentiated to yield the solution 
state.  Because we know that the solution state for an elastic body is terms of the 
displacement field is that which minimises the potential energy term. 

The potential energy TTp is defined as the sum of the internal strain energy U and the 
potential of the external loads.  However this latter term is more conveniently considered 
as the opposite of the work done by the loads W thus. 



MO 

U - w 

In the case of the simple bar shown in Fig.3.1 the external work is given by Pu anc 
the strain energy, as usual, by •=■ Ee'aJ, with E Youngs Modulus and e the strain - j-- 

r 
I 

L 
Hence 

u   Tp 
T   ♦ Figure 3.1 

U -   W   r  ^ Ee'aJ.   -   Pu. 

If we now minimise this term for the only free variable which we have, namely the 
tip displacement u, then: 

3Tt 
 F 
3u 

EeaH ^ 
du 

d£ 
du 

thus Eea  the simple equilibrium solution. 

3.1 Shape Functions 

In constructing an element we don't wish to be concerned with functions along 
element boundaries and even less do we want to be concerned with what goes on in the 
interior uf an element.  What we want is to be able to describe the displacement field in 
terms of discrete quantities at specific points in the element called nodes.  These nodes 
are normally located on the element boundaries and connect one element to another. 

If we wish to use only nodal values for displacements then we need functions which 
describe the displacements at all points within the element and on its boundary in terms 
of these nodal values.  The resulting functions are called shape functions.  As an example 
of a shape function we consider the beam element where the connections are _aken to be the 
normal displacements and the rotations as shown in Fig.3.2.  Taking a cubic interpolation 
function then . 

2    3 ' 
w  =  a^+a„x+a,x +a,x 

setting 

at X 

at X 

We can solve for the a. 
1 

i  ::  1,2,3,4, in terms of w.,w„,e.,©_: 

d  =  Aa   where d^  = {vi^ ,B^ ,vi^,e^}^ 

~T  _  r ,T 
a   -  I a. , a _ , a ^ , a , j 

and thus the displacement w can be defined at all points on the beam through the . 
expression 

w  =  Nd ,        ' 

where   N   is   given   by   {N.N   N-N   }    where 

N        -     1   .  221     +   2x 
1 2 3' 

N2     =     X   -   2x^/^   +   x^/|^2. 

,2 ,3 
j       -     221 2x 

2 3 
I X X 
>n    =- -   + — 
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Thus , 

®2 

The elements of the vector N, i.e. N  1=1,2,3,4 are shape functions relating the 
displacement w at all points within the element in terms of the nodal connection qualities 
w,|,G^,0202. 

The functions N^, N^ take unit values at one end of the beam .nd zero at the other 
and are, in fact, Hermitian interpolation functions.  Thus if we had not wished to go 
through the derivation process we could have simply noted that we require functions taking 
unit value at a specified point reducing to zero at the other end of the interval and 
turned immediately to Hermitian functions.  for co-continuity one can use Lagrangian 
interpolation. 

3. 2    rinite Element Formulation 

In describing the concept of shape functions we have employed displacement functions 
only and this is maintained in the current section where element stiffness matrices are 
derived.  Thus we only look at the displacement element formulation and leave element types 
such as equilibrium and hybrid formulation to other texts.  This simplifying assumption 
is made for two reasons.  First, the displacement element formulation is by far the most 
popular approach and is employed by all the major finite element analysis system.  Second, 
the principles which underlie the development of displacement finite element stiffness 
matrices apply to these other types even though the basic functional employed may be 
different. 

In order to develop the stiffness matrix for a given displacement finite element we 
assume that we have an approximate form for the dis£lacement field within the element given 
by u.  We also assume that we may have body forces F acting within the element and that 
surface tractions T may be applied over a region of the element surface defined by Sg. 
Under all these assumptions the potential energy term for an isolated element is obtained 
by generalising the potential energy term TTp introduced in the first section to yield: 

1 ?^D?dv - {{{  F^udv - {{  T^uds 
\     '-     )))    2 

where D is the strain-strain matrix standing in place of E and the strain energy density term 
for the element is given by 

1 ~TK~ 

we may define the strain-displacement relationships by the matrix expression 

e  =  Bu 

then using the shape function e -     BNd 

the strain energy becomes 

j  e^De  =  1 d^(BN)^D(BN)d 

and we define JJUBN) D(BN)dv as the element stiffness matrix 

ye^Dedv =  -1 d^kd (3.1 ) 

Turning next to the forces on the element which represents a generalisation of the work 
term in Pu for the bar and using the shape function matrix we have 

///F^udv . //  f^ud s 
sa 

d^N^Fdv + \\        d^N^Tds 

- d^p 
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where  p ///«'"•  • //„ N^Tds (3.2) 

Thus the potential energy for an isolated element is given by the expression 

iT=ydl<d-dp 

In order to evaluate the unkown nodal displacements d we apply the variation 
6Tip= 0 which, in this case, reguires that we differentiate ii  in terms of the displacements 

Hence '^ 

3TI 
 P 

3d 

or    kd 

kd - p = 0 

Having developed the basis of our_^theory for creating the finite element stiffness 
matrix k and the consistent load vector p its appropriate to look at some simple examples. 

3.2.1  Examples 

1. Bar Element (axial) 

U, 

-^■x. 

u. 

Figure 3.2 

Consider the first two nodal axial or bar element of length L and cross sectional area A, 
which we used in earlier sections. At node (1) we have a nodal displacement u. and u_ is 
at node (2 ) . 

We want a shape function which allows the displacement to take a value of unity at 
node (1) reducing to zero at node (2) and a second function which takes a value of unity 
at (2) reducing to zero at (1).  These functions are shown in Fig.3.2 but could have been 
found by demanding a linear variation in u along the bar, i.e. 

Thus 
N 

For a bar e 

BN  = 

and    D  = 

(BN)^D(BN) 

{^f} 
3u, 

3x  • 

ii n 

Tke 
1   -1 

-1    1 

6  =  3/ 3x 

f T 
1 1 

i \ 

Figure 3 . 3 
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k  =     (BN)'D(BN)Adx  =  -^ <^ 

As we had before! 

In order to demonstrate how to calculate p let us assume that a concentrated force 
(c) of 1 units is applied at x 3 2'-/3 in axial directions, a friction force caused by air 
flowing along the bar produces a unit force/unit length (q). 

We have no body forces F only traction forces T applied over the surface as in the 
case of the traction forces and at a point as in the case of the concentrated load thus, 

N qdx + N c 

as   both   c   and   q   ta^ke   uhit   values; 

/L-x^ ^1 

dx   + 

'/, 

V, 

1 I      o 
Thus the load applied at node (1) is P  =  /^ and at node (2) P2 = i- +  /j.  This 
technique for generating nodal forces gives rise to a consistent set and for the bar these 
F-E consistent loads are compared with the actual loads in Fig.3.4.  Note that the only 
loads on the element are P-| and P2 representing forces dt the nodes in the direction of 
the displacement u-| and uo. 

2» Beam Element (Bending) 

Now we turn to the beam bending problem in which we have nodes with two connection 
quantities, the nodal displacement w and the rotation H.  From the section 3.1 the shape 
function matrix is given by 

O) 

N {b-^^';^b-f^$}i^-^[-^^^)} 
For a beam the strain is given by the curvature change 

k  =  3^w/3x^      i.e.  B 3^/3x^ 

••  - = {[fl*r§^)[-rft](7-f§^]H*S 
For a beam D  =  El 
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Thus the strain energy term for the beam is given by 

o  2   V'< / r 12    6L    -12    6L 1 

(BN)^EI(BN)dx 
El 6L    4L^   -6L    2L^ 

.! -12   -6L     12   -6 

6L    2L^   -6L    4L^ 

As before we now wish to calculated the nodal forces on the element appropriate to the 
nodal connection quantities, i.e. we wish to compute 

J^Fdv + jj  N^Td 

Assuming a self weight force q/unit volume, a point P load applied at the mid-point of the 
beam and a moment M applied at x = ^'-/3 then we have (see Fig.3.6). 

/// -"' 
qdv + N P + 

dN 
dx 

= L/, 

M 

xr2L/, 

we have dN /dx because the work term for the moment z M0 r Mdw/dx 

^^.C 

n 
M 

|F 

^0 M. 

Figure 3.6 

If the beam is of rectangular section of width 'A' and depth 'B' then 

-N qABdx + N 
^  n 

dN 
dx 

x = L/, x=2L/, 

(f,^ f  L/, 

> = -qAB < 

\  *- y 

L'/ 

L/, 

-J/ 

12 

12 

M/2] r- ^1 3L 

L/a -1/3 
> + p < 

L/3 
>  +   M  < 

3L 

ka J 0 

3.3    Stress Computation 

The underlying concept of stress evaluation relies on combining the stress-strain 
expression 

a  =  De 

with the strain-displacement expression 

e  ::  Bu = BNd 
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to give 

BDu = BNDd 

Of course, this is all done at the element level so that we compute the stresses in 
each element individually.  Using the displacements obtained from the solution process of 
earlier section, i.e. from, 

V  =  i<"^P 

For the simple bar or constant strain triangular elements the strain field, and therefore, 
the stress field is constant throughout the element.  In the case of more complex elements 
the stress will vary within the element as is the case with the beam element, some decision 
is required with respect to where we compute the stress.  At the element level one may 
select nodal values for the co-ordinates and obtain nodal stresses.  Or one may select an 
interior point and, thereby, compute element stresses away from the nodes. 

There is also the question of how one treats the variations in stress as one moves 
from element to element. , ,     .. .,,, 

In practice a variety of procedures are followed to 'make sense' of the stress output, 
but there is no substitute for common sense and the application of structural knowledge. 
The 'rules of thumb' are then:- 

1)FarNodalStresses 

i)  If th.e strain is constant within element - unique values 

ii)  If the strain varies with co-ordinates, evaluate at interior point (or points) 
and interpolate. 

2) Stress Averaging 

i)  Stresses at given nodes will be different for different elements .'. average 
(unless 'stress Jump'). 

ii)  Alternative is to average stresses over a collection. 

iii)  Various 'improvement' schemes using iterative methods are avaiable. 

A moderate F-E system would offer these, and other options through a post-processor 
system. 

4.     ISOPARAMETRIC ELEMENTS 

Having looked at the procedure for generating element stiffness matrices and 
consistent load vectors we still lack a range of effective elements.  In order to expand 
this limited range we shall now examine the widely used isoparametric element which allows 
us to generate curved elementseffectivefor membranes, plates, shells and solid structures. 

The essence of the element formulation is to use a shape function to define the 
approximate displacement field and to define the element shape.  Thus both the displacement 
field and the element shape are defined in terms of nodal values.  Taking the shape function 
as N then the approximate^displacement field u given by u = Nd. Consequently the position 
vector p is given by p = Nc where c defines the nodal position co-ordinates.  An example of 
an isoparametric is shown in Fig.^.1 where the position p is defined in terms of the 
position vectors of the nodes 1, 2, 3, 4. 

Figure 4.1 
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4.1 Axial (one-dimensional) Co Bar Elements 

It is customery to use natural or intrinsic co-ordinates in developing isoparametric 
formulations; such co-ordinates range over values ±1.  Tor our one-dimensional problem, 
illustrated in Fig.4.2, we use C±1, regardless of the length of the bar.  Using the usual 
linear displacement field for the component u we have 

Nd   with   N {¥^ 

i=-i ^» o 

-. L/2—^ -_^/z 

Figure 4.2 

1-+1 

^a.Uji 

Although the co-ordinate 5 ranges of ±1 the element is actually defined in the 
x-co-ordinate starting at x^ and continuing to x„ with a total length of L.  Thus a point 
within the element is given by 

Nc again N {¥¥} 
and 

Thus   e 
2 du   2 ~~~ 
^ ^ = ^ BNd 

The potential energy term, for the bar is 

T ~T—      A-   ~T~      (^   ~T~ 
j  e DeAdx -    F uAdx -    T ud> 

^ n ^ n 

where A is the bar cross-section area. Substituting for e and u gives 

(■^    1 ~T — T       rL ~T  
TT   =     y d (BN) 0(BN)dAdx -    F NdAdx 

T^Nddx 

r* I  1  ~T T  r+ I  „T^T 
AE    Y d (BN) (BN)dJdC - A    d N FJdC 

d'N'l 
^-1 

with, in this case, 

TJdS (4.1) 

and 

, dx 
^ -- dt 

dx _ dN 
ds " ds 

x^-x^   L 

Hence 
y d kd - d p 
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where  K (BN)'AE(BN)JdC =  Y" < 

+ 1 
AN'FJdC 

/'' 
TJd^ and J 

with F^T transformed to the 5 co-ordinate  :, 

This two-noded formulation can be generalised to include quadratic (3-noded), cubic 
(4-noded) as shown in Fig.4.3 or any other higher order element. 

«> 1 

quadratic 

->! 
-1 -^1 

Figure 4.3 
cubic 

The only differences are that the order of the stiffness matrix generated from the 
potential energy functional 4.1 increases and the form J also changes if the nodes are not 
equidistant about ^   -   0.      These higher order shape functions are generated from the 
Lagrangian interpolation functions given by the formula 

N.(x) 
? -? 1 

j = 1(j^i) ''i-'-j 5;-5, 

4.2 Isoparametric Elements in Two and Three-Dimensions with Co-Continuit\ 

The same principles employed above to generate axial elements can be extended to two 
dimensions without difficulty.  In this case we use two natural or intrinsic co-ordinate 
5,n which are used to map the element onto one with unit-length sides.  If we consider 
elements mapped onto the unit square we see the same faily of elements emerge as those for 
the axial element as shown in Fig.4.4. 

Linear Quadratic Cubic 

Figure 4.4 

As we see the quadratic or higher order elements allow us to model curved boundaries 
but do generate internal nodes which must be condensed out.  These elements use the 
Lagrangian interpolation function, but multiply together the contributions from each 
coordinate.  For example the shape functions for the linear element case given by 

N.(C,n) l(i+CS.)(i+n ^) 

thus ^(1-5)(1-ri) 
1 
(i+C)(i-n) 

^d+ad+n) 1 
(i-?)(i+n) 

Although Lagrangian functions are a useful way to generate this class of element it 
is possible to create, directly, elements which do not have interior nodes and these are 
termed 'serendipity' elements. 

In the one dimensional case which we examined above the principle of transforming 
from one coordinate system to another presented little difficulty.  Consider a specific 
term u which is a function of x and y then the derivatives of this function can be written 
as 
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•11 

'22 a^   3^2   ""   3^2   ^^1      ''''   ""   "^2 

■12 '21 

3u, 3a, 

a^a2   3^2 

3a 

oi^a2   35 7-] 

12 

11 

'12 

«1   3^1 

^3^ 

a2   3^2 

3a, 

a^a^   352 

3a. 

01^012   35^ 

"12 

'21 

«i 3^1 

^3^ 

012   3^2 

^■^^2   ^^2 

3a. 

a^a2   35^ 

Figure  b.l\ 

and   it   is   common   to   combine   these   last   two   terms   to   give   a   symmetric   term 

r 1 
12 2 ^"^12 ^   '^21^ 

with a,, a_ the coefficients of the first fundamental form of the surface.  The quantities 
u. , u, are components of displacement along the co-ordinate directions t,.,   ^j   and w is the 
displacement along the outwards normal to the shell surface, the terms 6.,   i^,   i-.   are the 
respective rotations as shown in Fig.5.5  R., R„ are the radii of curvature of the median 
surface with R,_ the radius of torsion.  The strains and curvatures defined above are 
decoupled but, if the Kirchoff hypothesis is involved a coupling appears because the 
rotations are then defined in terms of the displacements by 

_1_ f     _1_ 3w "l 

J_ f    _L 3w ") 
R, \^1   -   a, 35J 

2a^a2 

2 

3u, 

'2 W, 

So, 

■'2 3cr 

3u^ 

'1 W. 
3a^ 

'2 w. 

The membrane and bending resultants for isotropic materials, associated with this 
displacement formulation are defined by 

11 
12D 
,2 (e 11 ve22) 11 D(l<^^ + vk22) 

22 
12D 
^2 (e 22 11 22 D(k22 + ^k^ ) 

N 
12 

12D 
^2 (1 V) e 12 

M 
12 D(1 v) k 12 

where h is the shell thickness, P the flexural rigidity 

D   =  Eh-'/12(1-v^),      " 

E Young's Modulus and v Poisson's ratio.  The boundary conditions from which the consistent 
load vector may be constructed are, for an arbitrary edge. 

nv 

^nv 
N   or U nn     n 
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- 1 nv 
^n   *  a     3  V     n 

N or   U        =      U nv V V 

nn      n 

V      or n 
Figure 5.6 

Where   n,   v are co-ordinates on  the median    surface   which   are   respectively   normal   to   and   along 
the boundary curve as shown in Fig.5.6; R^ 
curvature . 

are the corresponding radii of 
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ing a thin shell element is now expensed.  Unlike the 
ations defining the strain measures, taken in conjunction 
tations. 6^,    i=1,2,3 after the imposition of the 
ry equation show that a decoupled bending and stretching 
he problem would be overcome if we could define the 
U2 and w separately.  However, this is not possible 
ollowed and alteratives have been sought.  The most 
Irons and known as the semi-loof element.  This 

e nodes require connection quantitites u^,   u^, w and 
s required; as shown in Fig.5.7.  Thus we have 
etween displacements and rotations.  Originally this 
nciples from a set of stacked serendipity membrane 
own that it is a hybrid. 

An alternative approach similar to that employed with flat plates where a 
3-dimensional brick element is reduced down to two dimensional is also used with thin 
shells.  By using reduced integration and other devices an attempt is made to re-create a 
Kirchoff like shell formulation through heuristic numerical means.  This   'hackers' 
approach to shell elements can sometimes work extremely well but it is fraught with many 
pit-falls.  Once again the importance of validation checks is seen as a central pillar in 
creating some form of confidence in elements where the internal theory, on which their 
derivation is based is completely masked by numerical manipulation. 

6.     CONVERGENCE AND ACCURACY OF RESULTS 

We want to be as sure as possible that the procedure we have followed in deriving 
element and solution methods lead to the correct solution and to this end we want to have 
some rules to guide us.  But, first, we need to assess the kind of solution we are likely 
to get . 

6.1    Equilibrium and Compatibility 

For a displacement element we can expect the following: 

1) Equilibrium is not usually satisfied inside an element 
unless we have low grade elements such as constant strain triangles 

2) Equilibrium is not satisfied across element boundaries 
often a good guide to accuracy 

3) Equilibrium of nodal forces/moments is satisfied 
this is an imposed condition 

4) Equilibrium is satisfied between applied loads and reactions 
a useful check as we shall see later 

5) Compatibility is satisfied within elements 

6) Compatibility between elements across element boundaries should be satisfied 
although displacement elements have been divided in such a way that inter-element 
compatibility is violated, this should be avoided if possible. 



1-22 

7) Nodal compatibility is satisfied 
this is an imposed condition 

6. 2    Convergence 

Now that we know what kind of finite element solution we can now expect we can now 
attempt to list the properties which will ensure that our solution does indeed, converge 
to the correct answer.  That is we wish to be assured that the formulation is such that as we 
refine the F-E mesh we will monotonically converge to the correct answer at least from an 
energy view point.  In order to achieve this requirement we should satisfy the following 
conditions: 

1) Admissible Shape Functions: 

The shape functions which we use on the interior of the finite element must be 
admissible in the sense defined earlier.  Thus they must satisfy the natural 
boundary conditions of the problem both at structural boundaries and across element 
boundaries.  If the underlying differential equations are of order 2 m in their 
derivatives the corresponding variation functional (in our case the potential energy) 
will have derivatives of order  m  and boundary conditions of order m-1 (i.e. beam 
Eld^w/dx^ = P, P.E. => EId2w/dx2 boundary conditions = 6   (dw/dx) and w). 

Thus for an element       to handle a structural formulation with derivatives in the 
differential equation of order 2 m it must have an assumed displacement field  with 
Cm continuous on the interior and be C^_^ continuous across element boundaries. 

2) ExactRecoverySolutions: 

In essence this is a constant strain condition and the element should be able to 
recover it exactly.  For the case of simple elements with simple polynomial 
displacement fields, such as the constant strain triangle, this fact can be 
established directly.  In the case of more complex elements such as direct evaluation 
it is not available and we must turn to the 'patch test! '. 

3) Satisfaction of Rigid Body Modes 

4) Conforming elements - non conforming elements are now being used put they create 
doubts (possibly conforming in the limit). 

5) Geometrically invariant, i.e. has no preferred direction. 

6) Polynomials must be complete: 

Completeness means that the polynomial contains all the terms up to the specified 
order . 

e.g. a complete linear poly   = a  + ax + ay 

2      2 a complete quadratic poly = a. + a.x + a,y + a,xy + a_x  + a,y 
\ L J 0, p 6 

Failure to use complete polynomials often leads to elements which violate conditions 
(5), i.e. they are biased. 

6.5    Accuracy 

There are a variety of ways in which a finite element analysis can be persuaded to 
give inaccurate results, we shall look at two particular aspects. 

1) Idealization Error: 

In modelling a structure we need to model a real structure which will have joints, 
bolts, fasteners, local reinforcement etc.  When these are modelled the engineer 
has to make assumptions about the structural behaviour and structural properties. 
Then he selects the element type, elastic properties, node numbers etc.  The 
resulting F-E analysis will give rise to stresses, displacements etc. which are different 
from those which would actually occur in the real structure.  This sort of general 
error is known as discretisation error.  In certain circumstances we can reduce one 
of these errors  for example in regions of high stress gradients we might want to put 
in more elements.  Curved boundaries are likely to give trouble and require  special 
attention. 

Thus certain of these discretisation errors can be removed by careful use of the F-E 
method and paying attention to detail, but others require testing and correlating 
with test results. 

2) Ill-Conditioning 

Ill-conditioning of the stiffness matrix means that changes in the coefficients 
of the matrix or small changes in the applied loads can cause large changes in the 
coefficients of the nodal displacement vector obtained from the solution process. 
This type of ill-conditioning occurs when the terms in the stiffness matrix have 
large differences in their numerical values - large enough to be influenced by the 
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truncation error inherent in digital computers.  The phenomena can also be produced 
when a region of high stiffness is surrounded by a region of low stiffness.  It also 
occurs in thin shell problems where there is a major numerical difference between 
bending and membrane strain energies. 

In theory, and in practice when serious ill-conditioning problems are anticipated, 
the condition number of the stiffness matrix can be checked.  This is first done 
by scaling the stiffness matrix with respect to the maximum diagonal coefficient 
thus 

K SKS with S. 

where S is a diagonal matrix.  The maximum and minimum eigenvalues of Kg are then 
found (Xmax, Amin) and the spectral condition number C(K) is then defined as 

C(K) Xmax/Xmin 

If the computer represents a number with d digits then the results computed are 
accurate to S digits where. 

d-log^gC(K) 

,12 
Thus, for thin shells C(K) may equal 10   then 

S  =  d-12 

and if the word length gives d = 13 then the results are only accurate to one 
significant figure. 

7. NONLINEAR BEHAVIOUR 

7.1 Introduct ion 

Our philosophy throughout the course has been to outline the main features of finite 
elements without giving the details of the theory or methods employed.  This is particularly 
the case with the non-linear analyses of structures which is complex and by no means 
completely understood.  Nevertheless it is an important aspect of the design of structures 
and emphasis on efficient structures is pushing many engineering disciplines, which have 
traditionally relies on linear analysis, to consider non-linear behaviour.  Non-linearity 
can occur because the material itself exhibites a non-linear behaviour or because the 
geometric movement of the structure is large enough to cause cross-coupling between strain 
fields.  Naturally the first of these is termed 'material' non-linearity and the second 
'geometric' non-linearity.  In the sequal we touch on both aspects. 

7.2 Geometric Non-Linearity 

In order to keep life simple we illustrate the main theme of geometric non-linearity 
using the bar element illustrated in Fig.7.1.  Here we see a bar originally of length I 

resting along the x-axis which is both rotated and distorted to a new length Jl + dS,. and 
The 

Ux = 
strain 
u + 6. 

in the deformed 

i 
dH/l,   the component e^ is Uv/S- but 

Figure 7.1 

If the rotation is not very large then we can compute the value of 6 in terms of 
the displacement V: 

5,-6 /Jl2 - V2 

S,/ 1 

*   2 S, 

hence 1 L 
2 I 
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Thus   e 
5, 

^ + If'-] 

and   in   the   limit 

u       J_   (dV) '■ 
n   "^   2   l^dxj 

If we now regard this as one step in an incremental deformation process then the 
bar will have already been strained (unless this is the first increment).  In the general 
case the strain will, therefore, consist of two parts, the strain accumulated from previous 
load increments e^^ and the new strain increment e^ thus 

total 
e° 

If we want to move on to computing the stiffness matrix we recall that the material is 
linear so that we can apply Hookes law and the potential energy term becomes, for a bar 
element of total length L 

final 

Eede dx - Pu 

.     final ...    . .  ,   . , 
where e      is the original and incremental strain 

o 

P  are the loads 

u  are the incremental displacements 

Taking the strain energy term first we have 

final 
^e 

^e 

Eede dx Ee  dx 
X 

Ee ^dx 
X 

Ee° e dx 
X X 

and, if we neglect small order terms, this term becomes: 

AE m'' A. 
dx 

AEe< 

1^ - AEe' du 
n dx 

dx 

where A is the bar cross-sectional area. 

Taking the nodal displacements as indicated in Fig.7.1, then our strain energy term 
becomes: 

H-^}{-; ";}{::}-^{^^}{.; 
AEe° 

(u. u^) 

If we observe that AEe°^/L = P , the load being applied at the beginning of the increment 
we note that the last term in the above energy expression is the work done by the initial 
load moving through the increment of displacement u-) - U2.  We are, therefore, assuming 
that we start with an applied load P° with an intial strain e°x, finish with an applied 
load pfinal ^^^^   g final strain e^^malj^ and uq , U2, V.,, V2 are the increments of 
displacement. 

We now substitute these into the form for Tip and the proceed to differentiate this 
s  " 

P 

in terms of u^, u    ,   V , V  we have 

(!<+!<•,) y 
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where K 

r 1 0 -1 0^ 

AE 0 0 0 0 

L < 
-1 0 1 0 

.  0 0 0 0. 

'0 0 0 0^ 

po 0 1 0 -1 

—   ^ 
0 0 0 0 

0 -1 0 1 

a     is the vector of incremental displacements 

u^, u^,   V^, V^ 

and P the vector of incremental loads (P     -P") 

The term K is the normal linear stiffness matrix and K-] a geometric stiffness matrix which 
is considered not to vary throughout the load increment.  It may be noted that a whole 
variety of assumptions have been made in obtaining these equations and other interpretations 
would give rise to alternative geometric stiffness matrices, though  the overall principle 
would remain the same. 

The solution procedure requires that the form        ■■ • '^ •• 

(K K^)- 

is solved repeatedly with K. reformulated at each step.  Thus for a given increment 'i'u 
becomes u(i' the i"^" increment of the displacement vector     P becomes ApCi) = (p (i )_p'''i-1 ) ) 
the ith increment of the load vector.  Hence the full solution~to the problem then becomes 

total 

and for the total load 

,total I« (i) 

This represents the basic approach to the solution of geometrically non-linear 
structures though the assumptions made in this particular example may be too restrictive 
for highly non-linear problems.  A more general attack using the full Lagrangian strain 
tensor loads to the form: 

.(i) (K (i) (i). 
■ 1 

AP (i) 

where the stiffness matrices K, and )<_ have first and second degree terms in the gradiemts 
of the incremental displacement vector.  Despite this added complexity the philosophy 
outlined above is clearly preserved.  Whichever approach is adopted the numerical solution 
process is the same and may involve the Newton-Raphson method or some acceptable alternative. 

7.3    Material Non-Linearity 

The underlying concept behind material non-linearity is that the relationship between 
stress and strain is non-linear as shown in Fig.7.2.  This may be non-linear elastic in 
which case unloading follows the same curve as that plotted on the loading cycle, i.e. 
curve A.  Or if some 'plastic' deformation takes place then the unloading curve B is 
different from the loading curve A. 

In wishing to follow a curve like A we observe that the stiffness matrix is a 
function of a parameter which we will take as some form of representative, stress a; though 
other parameters may be more appropriate to certain classes of problem.  Thus we have that 
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the nodal loads on a structure P are related to the nodal displacements u by: 

P  -  K(a)u -.  ■ 

Figure 7.2 

For a given final load vector P  we shall have need for some form of iterative 
process to allow us to follow the non-linear behaviour depicted by curve A. 

The most straight forward approach is simply to repeatedly solve the equation for 
given values of stresses thus 

.(i) -k-\a^'-'h   P 

Thus we start with the normal linear form for k, solve for a   using a = DBu then 
compute (K(a) and re-employ this equation to create a new set of values for a and so forth. 
The load applied P is the' final load P*- which the structure is assumed to carry. 

Unfortunately, this simple procedure sometimes fails to converge and a more stable 
approach is required.  A variety of techniques are employed but all work on the basic 
premise that the stresses used in computing the stiffness should be a more accurate 
representation of the stress field in the structure for a given step in the iteration. 
Thus we try to use k(a^i') rather than kCo^-"-"^') where the unknown a(i) is estimated from 
the   known a^i-1J.  For example, a first-order Taylor expansion could be used: 

^(i) ._     ^(i-1) ,|a ^p    ■ 

This requires that we only increment the load and thus proceed in a step-wise 
fashion to the final load P .  In order to fill in the terms of this expression we note 
that 

3P 
3 a  9u 
3u  3P 

with a DBu 

3u D.B. 
. 8u 

and g^ -1 

so, for    AP 

„(i) 

P^^' - P^'-^\      we have 

0^'-'^   - Dia^'-'^BK-\a^'-'^)iP^'^   - P^^"^^) 

and we may now incrementally update the displacements:- 

Once again we may start from the linear solution and proceed by employing the above set of 
equations repeatedly until the final load pt is reached. 

This broad approach can be used for a range of non-linear applications; plastically, 
creep etc.  In these cases special procedures can be used which take advantage of the 
specific behaviour being modelled.  For example in the case of the elastie-plastic 
material model the elastic and plastic components can be divided out and treated 
separately.  In this case the computational efficiency and stability of the iterative 
solution procedures may be improved.  However, added complexities occur in realistic 
cases because certain parts of the structure may be unloading during the incremental 
loading process.  In these situations great care is needed in tracking the loading history 
if acceptable accuracy is to be achieved. 
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VIBRATION PROBLEMS AND F-E SOLUTIONS 

8.1 Introduction 

So far we have only considered the solution of statically loaded structures giving 
rise to responses which do not vary with time.  We now want to extend the finite element 
so that we can be able to deal with structural problems subject to vibrating loads which 
are very common in aircraft structural design, either as standard vibration problems or 
as more complex aeroelastic responses. 

8.2    Finite Element Formualtion 

We begin by defining the  Lagrange function L for a dynamical system as 

L  =  T-TT . -    . , 
P 

where iTp is again the potential energy and T is the kinetic energy.  For the moment we 
omit  any dissipative forces.  With this function we can now .proceed to obtain the 
appropriate variational principle which allows us to apply the displacement finite 
element method to dynamical systems.  This is called Lagrange's principle and states: Of all 
possible time histories of displacement states which satisfy the compatibility equations 
and the constraints or the kinematic boundary conditions and which satisfy the conditions 
at initial and final times (t ■] and t2), the history corresponding to the actual solution 
makes the Lagrangian functional a minimum: 

^t. 

This implies, 

Ldt  =  0 

now    T  =  T(q,q) and, thus, L  =  L(q,q) where q is the displacement field associated 
with the dynamic displacement field within the structure.  Thus 

/t. 

Ldt 

A. 
|-6q.|6q>dt=0 

thus 

Ldt {1^ ^'^ ^ ^(S *^] -^(IS*^}'^ 

^  ""SL   d ftC\\..        16L ,  ^ 

1 t 

Thus if we satisfy the initial and final boundary conditions, i.e. 

9L 
TTT   3q  =  0 at t = t. and when t = t- 
dq 1 2 

i.e. either 

3L     3T 
JQ      '     yj - "iq = 0 °r q = q* at t = t. and t^ 

note that mq is the momentum. 

Assuming that this boundary condition is met then the variational principle demands 
that q and q satisfy the condition 

dt(^3qj  3q ". , .        . - 

If we now introduce a  dissipation function R then the principle requires 

jLflkl      IL       ^     _ 
dt UqJ      3q   ""   3q      "      " 
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Taking a specific finite element T and R are given by 

pu udV 

Viu udV 

and IT  has already been discussed. 

Following our usual procedure for a displacement finite element we take a vector .of 
nodal displacement variables d and use the shape function matrix N to give 

U      =      Nd . ; , .. 

where N has no components which are functions of time (though 'time' elements are taken in 
certain fluid formulations).  Thus 

p(Nd) (Na)dV 

1 a^ma 

err 
1 
2 U 

) J J 

h' \' r c :a 

u(Na) (Na)dv 

and m and c are called the consistent mass and dissipation matrices, where 

(( ~>  ~ 
pN NdV and c = yN NdV 

recalling that at the element level 

1 :rTr-:;  :;T~ •=- d kd - d p 

then the elemental Lagrangian function is given by 

■(e) 
1 ,T ,   1 ^T, .   ,T ■=■3 ma -yd kd -dp 

Rather than work at the element we assume that we have assembled up the global system so 
that: 

■(g) 
1 o^Mu - 1 OKU - U^P 

'(g) 
□ CD 

where U are the global nodal displacements, M,K,C, the global mass, stiffness and 
dissipation matrices with P the global load vector. 

Where , 

[s., i< = j; k,, c . V c., p . [p. 
i = 1 i = 1 i = 1 i-1 

for an F-E model having n elements and m nodes 

Applying our variational principles at the global level requires 

_d_ 
dt 

(q) 
3u 

f3R. ^ 

l3u 
= 0 
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giving Ml! + KU + CCT  r  P (t) 

If there is no dissipation the matrix C is omitted. 

8 . 3    Mass Matrices 

The 'consistent' mass matrix is so called because it is consistent with the 
stiffness matrix, employing the same shape function.  As an example, consider the simpler 
bar element demonstrated earlier, then the displacement for this element is 

u  =  Nd 

where 
{(1 -f)(f)} 

The consistent mass matrix is then given by the expression 

pN'Ndv 

r  L 

pA- 

(1-VL) 

('*/L) 

/(I-VL)(VL)| 

where A is the bar cross-sectional area.  Thus 

pAL 2   1 

l1   2j 

In the case of the cubic displacement field for the beam bending where 

r,   3x^   2x^V    2x2   x2V3x2   2y^\{     x^  x^ 

pAL 
420 

' 156 22L 54 -13L^ 

22L 41^ 131 -3L2 

54 13L 156 -22L 

. -13L -31^ -22L 4tl 

Although the 'consistent' formualtion represents a logical method for generating 
mass matrices it is not the only approach. An alternative is the so-called lumped mass 
matrix where a certain amount of structural mass that surrounds a given node is assumed 
to be concentrated or lumped at that node. In the case where there are both rotational 
and translational components to the displacement fields the rotational part is sometimes 
neglected. Whilst the consistent matrix is usually fully populated the lumped matrix is 
diagonal. 

is then , 

m 

Thus, in the case of the axial bar the total mass is pAL and the lumped mass matrix 

1    0^ 

0    1. 

AL 
2 

for the beam the total mass is the same and the lumped matrix 

0^ 
L/ 

pAL 12 

I 0 L/ I2J 
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In this case the rotary inertia about each end of the beam is calculated on the 
assumption that''/2 the beam mass is associated with each node.  If we ignore rotational 
terms the mass matrix reduces to 

pAL 
2 

0^ 

0 

which is singular 

8.4    Free Vibraitons Analysis 

Disturbing an elastic body in the absence of damping and external forces leads to 
harmonic osciallations.  Thus removing these terms from the basic matrix equations give: 

mu + ku  =  0 

and taking the harmonic solution 

~    ~  iwt 

leads to the free vibration equation 

-[k-w^M|u  =  0 

where u^ is a vector of the amplitudes of the displacements u and are called the mode 
shape or eigenvector.  The term w represents the natural frequency of vibration and is an 
eigenvalue for this linear algebraic eigenvalue problem.  In this case we do not need to 
remove the singularity of the stiffness matrix to obtain a solution.  Indeed the zero 
value  natural frequencies correspond to rigid body degrees of freedom. 

to zero. 

|k-w^M| 

In solving this type of problem we need to set the determinant of the system equal 

this then gives us the eigenvalues of the system and this is interpreted as the frequency 
vector w 

{"r "2 "^N} 

In order to obtain the mode shapes we observe that the system has n equations to 
generate the n components of the modal shape vector (or eigenvectors).  Thus we select the 
first element (say) of the displacement vector and set it to unity, thus 

(n)- 

(n) 

r 1   1 

(n) 

!i9 

(n) 
M 

Now putting 

(n) 

E  =  k-w  M n 

then EU^"^=  0 
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and partitioning 

1^01   Si' i'^ 
(n) 

~  ~ ~(n)     _ 

~(n)  ^  _^  -1g 
" 11   01 

8.5    Eigenvalue Economisers (Guyan Reduction) 

Because the problem of solving for a large scale structure is difficult, from a 
computing viewpoint, it is often found convenient to reduce the size of the eigenvalue 
problem.  The process of reduction involves thinking in terms of 'master' and 'slave' 
degrees of freedom  where the masters are restrained and the slaves removed by 
condensation. 

Although this process does decrease the number of degrees of freedom, and thus, the 
size of the matrices to be handled it also removes  the sparsness of the mass and stiffness 
matrices.  By filling up the associated matrices the process removes the economics of 
sparsness and this has to be balanced against the advantage of reduced matrix size. 

Dividing into 'master' nodal freedoms u  and 'slave' freedoms u  gives us a 
partitioned problem; 

K      K 
mm    ms 

K     K 
sm     ss 

>   - w < 

M     M 
mm    ms 

M     M 
sm     ss J 

N    /        N 

"m 

> < 

u J I  s) 

>  =  0 

We   use   the   stiffness   matrix   to   define   the   relationship   between   the   'master'   and   'slave' 
degrees   of freedom which  is equivalent  to assuming  that no  loads    are   applied   to    'slave'    degrees 
of   freedom   in   the statics    problem,   thus, 

K K 
mm ms 

K K 
sm ss 

U 

> < 

This gives the required relationship: 

-K   'K  'U 
ss   ms  m 

U 
m 

thus > =  TU  = < 
m >0. 

ss    ms 

which gives the condensed system 

T^(i<-w^M)Tu   -     0 
m 

or (K -w^M)u   =  0 
r      m 

with K   =  T KT ;  M 
r '   r 

T^MT 
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The transformed matrices Kj, and M  are much denser than original mass and stiffness 
matrices.  The transformed or reduced mass matrix is now a complex combination of stiffness 
and mass matrices:- 

M   =  M  -M  K  "^i<  -K  K  "^M r     ss  ms ss   sm  sm ss   sm 

+  i<  i<  "^M  K  "^i< ss ss   ss ss   sm 

The solution to the condensed problem only provides values for u  and to recover the full 
vector u we could use the relationship between u  and u .  However, there will be errors m     s       '^   ' 
introduced in this process because the slave degrees of freedom u  are associated with 
nodes where it is tacitly assumed that these^are no loads.  Actually, inertia loads should 
be applied to the u  nodes while recovering u and to this end we return to the original 
formulat ion : 

>  = w < 

M      M 
mm    ms 

M     M sm    ss 

('■ \ 
u 

m 

> < 

u 

>  r   0 

thus 

h 2r;\-l/^T     2r;T  \ ~ -<K  -w  M>--<K   -w  M   >-u 1^ ss  n  J  (^  ms  n   msj  mn 

when the eigenvalues w   and eigenvectors u   for the reduced system are known. ^ n       ^ mn ' 

In the major F-E systems, the selection of 'masters' and 'slaves' are automated by 
scanning the diagonal coefficients of K and M and selecting the first slave for which 
K. ./M. . is the largest.  The matrices are then condensed and the process repeated with the 
i i  i i condensed matrices. 

8.6    Dynamic Response - Model Analysis  (uncoupled equations) 

We now turn to the solution of structural problems where the structure is subject to 
a time dependent applied load. For convenience we shall only deal with undamped structure, 
though the same arguements apply when certain damping factors are introduced, i.e. Rayleigh 
damping. 

First observe that a general displacement field for a structure can be constructed 
using the mode shapes for the free-vibration problem.  Clearly an approximate solution can 
be constructed from any suitable function - and the mode shapes have^certain properties 
which we can use with advantage.  Thus a general displacement field u is given by 

I *i^i cpz 

iri 

where cp. are the n mode shapes and for a structure with n degrees of freedom and z. are the 
modal amplitudes which act as weighting function and are unknown values. 

The problem requiring solution is defined by the matrix equation 

Mu+Ku P(t)  (with u u(t)) 

substituting for u gives. 

Mcpz+k(pz  =  P(t) 

where z(t).  Pre-multiplying by cp  gives 

$^M9z+$^Kcpz  =  cp^P(t) 

recalling the orthogonality and normality properties of the system we have that 
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cp.   Mcp .      =     0 

=     1 

i = J 

i = j 

^1      ^J i = J 

2    . 

thus 
~f— ~ ~,T— 2 
cp  Mcp     -      I   and   cp   Kcp   =   [w   ] 

2 
where [w ] is a diagonal matrix. 

2 

Thus we now have 

T?+[w^]z        r       $'^P(t) 

which   may   be   re-written   as 

z . +w.   z. 
Ill 

P.(t) 

where P.(t) tp^'P(t) 

The un-coupled equations can then be integrated by one of the direct methods on the 
computer or solved in some other way. 

Because we are only using the modal shapes as approximating functions it may not be 
necessary to generate many of the actual shapes cp. - these may also be generated 
experimentally. 

9. FIBRE COMPOSITES , > ;t . 

9.1    Introduction 

The elements of the theory of finite elements which we have built up in the proceeding 
sections can be applied to the application of composite fibre structures.  In essence there 
is no problem in modelling this type of material since our theory will admit of anisotropic 
properties, provided these are accounted for by putting the full anisotropic terms in stress- 
strain relations.  However, in aeronautical applicaitons, it is common to assume that the 
structure being analysed is adequately represented by a plate modal.  In addition, for many 
applications it is possible to further simplify the model by imposing the Kirchoff 
hypothesis on the bending terms.  This is the procedure which is followed in this short 
section. 

9.2 Plate   Model 

Figure 9.1 
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The model is assumed to consist of a series of layers of material.  Each layer is 
constructed from a fibre lamina of given orientation (o° to the x-axis, say) held in a 
matrix of resin.  Each lamina is bonded to adjacent laminae by the same resin.  This mode 
of construction means that the whole material is constructed from layers with orthotropic 
properties.  The properties of the layers is computed once the fibre and resin properties 
are known.  The example illustrated in Fig.9.1 has four such orthotropic laminae. 

Following our simple palte theory assumption the strain fields given in the 
laminated structure are: 

~    3u du _  o 
3x " 3x 

a^w 

3x' 

xy 

dv _  O 
3y " 3y 

3 w 

3y 

3u   av o    o ^  3v_ _      
3y "^ 3x  " 3y ^   3x 3z 

S^w  o 
3x3y 

where u , v , w , represent the two in-plane and the one out-of-plane displacements of the 
plate mid-p?ane°as illustrated in Fig.9.1.  Dividing the strain field into in-plane strains 
and curvature changes gives: 

o      ,, e   =  e    +  zK 

zK 

Y    -  Y     +   zK xy      xy      xy 

with 3u /3x o 
3 w /3x 

3^./ y 3^w /3y^ o 

Y   =  3u /3y + 3V /3 ' xy    o  '     ox xy -23 w /3x3y o 

Recalling that the stress-strain relation is now a more complicated formulation we have 

\°. 

xy 

^Qii      Qi2 

SYM 

■^131 

^22 ^23 

X 

> <e 

Q33J U^yj 

Thus: 

^Sl S2 

a     >    =    < 

vT      j ^  xy^ 
SYM 

Q    "I    re° ^ 

Q22 Q25^^ 

'Q11 Q12 

Q.J 

e      > +  z < 
y 

'by   ^' )y- a SYM 

Ql3^ 

«22 ^23 

X 

> < 

Q35J ^ xy^ 

The stress resultants and moments are defined in the usual way for a standard 
classical plate theory, but the integration is taken across a series of laminae:- 

Kt/, 

-t/. 

a  dz 
X 

i = 1 

t. 
r  1 

a d 
X z 

'i-1 
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f+tl. 

-t/. 

aydz  =  \ 

i = 1 

a dz 
y 

ti-1 

xy 

ht/. 

T  dz 
xy 

-t/. 

I 
i = 1 

T  dz 
xy 

'i-1 

/+t/. 

-t/. 

n 

a zdz =   ) 
X        u 

i = 1 

a zdz 
X 

'i-1 

ht/. 

-t/. 

n 

a zdz =   > 
y     ^ 

i = 1 

a zdz 
y 

i-l 

xy 

ht/. 

-t/. 

T  zdz 
xy I 

i = 1 

/-t. 

irl 

T  zdz. xy 

Substituting the definition for 0,0,0        in these expression and performinq the xvxv integrations gives:- '    ' 

v\y- 

11     12    "l3 

^ = \ 

SYM 

X 

^11 ^I'i'^ ^ 

33 lY 

''^11    ^12    ^13 

>+<       B22    B23 

xy-'^ 
SYM 

x 

> < K       > 
y 

K 

fB 11 

> = \ 

^ xy^ SYM 

12 13 

B22    B23 

33 

> < 

o 

fD,,    ^2 

> + < 

SYM 

^13^ 

^^22    ^23 

33 

> < 

^•^xy^ 

Which gives a coupled set of equations relating the stress resultants and moments to the 
strains and curvature changes. 

These may now be used in the potential energy form for a plate containing bending 
and membrane terms.  The appropriate stiffness matrix is then obtained  by differentiating 
with respect to conneciton quantities which will normally ne u , v , w , 3w /3 , 3w /3y at 
element nodes.  Thus the same problems and potential solutions°occur iR this type o? 
problem as with the transitional palte discussed earlier. 

The added complexity ocver the earlier plate problem arises in constructing the 
matrices A, B and D.  Many small, micro-based, programs exists to create these terms which 
may then be fed into the main F-E system.  However, some of the main F-E analysis programs 
do have this capability as part of their pre-processor range. 
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STATING THE PROBLEM: THE STEP BEFORE F.E. MODELLING 

by Ian C. Taig 
Chief Engineer, Research 

British Aerospace pic, Military Aircraft Division, 
Warton, Preston. Lanes. PR4 lAX 

England 

SUMMARY 

Structural analysis is concerned with finding practical solutions of physical 
problems in the real world; finite element analysis is one powerful tool used as part of 
this process.   Before starting to set up a finite element analysis the task should be 
planned and the essential features of the real world problem should be identified.   In 
this paper we look at seven steps in this process:- planning the analysis in relation to 
resources available, definition of the real structure, description of the structural 
context, statement of the purpose and nature of the analysis, formulation in finite element 
terms, definition of the facilities and resources available (the solution context) and, 
finally, prescription  of the solution requirements.   In all cases, except formulation, 
these topics are dealt with discursively, without recourse to mathematics.   In discussing 
formulation, a simple "Engineers' Theory" of matrix structural analysis is presented as 
an everyday medium for defining and understanding the F.E. solution process. 

1. Introduction 

Finite element analysis of a structure is not an end in itself - but a means to an 
end.   The real objective is always to learn something about the behaviour of a real 
structure - an assembly, perhaps, of many physical parts made of real, imperfect materials 
and subjected to real loading conditions which can rarely if ever be precisely known. 
Boundary and support conditions are those which apply in the real world, whether we are 
considering a free body in a perturbed airstream, as is typical of a flying vehicle, or 
foundations in a heterogeneous ground medium for civil engineering structures. 

Not only is the primary objective to learn about real structure behaviour, we must 
also recognise that finite element analysis, whilst undoubtedly the most powerful and 
universally applicable tool available today, is not the only such tool.   It rarely, if 
ever, addresses all aspects of the real world problem and it is often quite foolish to 
try to make it do so.   For example, it is pointless to use a very fine mesh F.E. analysis 
to solve the problem of stress concentration around a circular hole in a region of uniform 
thin plate material under nearly uniform stress - a sound analytical solution exists for 
that problem which can only be numerically approximated, at considerable expense and 
effort, by the F.E. method.   In almost every such case the better course will be to use 
F.E. methods to determine characteristic stress levels in the region of the hole and apply 
analytical or empirical factors to obtain peak stresses. 

Again it is pointless to embark on any large or complex analysis without a reasonable 
appreciation of the size of the task, how long it will take and what it will cost in 
people and money terms.   We would not think of contracting out a job to a bureau without 
asking for a time and cost estimate, setting deadlines and price limits.   Yet how often 
do we launch an analysis in house without even asking the questions?  In my experience, 
almost every time! 

In this lecture;, I address the first stages of the analysis process - what might be 
termed the formal specification of the problem to be solved.   This is not only to 
establish a sound basis for the finite element modelling which is to follow, but also to 
provide a record so that an independent investigator can follow what it was that the 
analyst intended.   I am talking in non-mathematical terms and addressing the analyst's 
boss just as much as the analyst. 

2. A Methodical Approach to Specification of the Task 

The following steps should be followed, either formally or informally, by every 
structural analyst, before beginning a finite element analysis job.   In the U.K., in 
recent years, the NAFEMS agency has strongly recommended(1) that this process should be 
formalised and recorded using check lists or proformas.   The ideal, in the author's view, 
(3, 4) is to build in the process as a front end to an F.E. analysis Pre-processor, 
producing a specification report as output.   The suggested steps are:- 

Analysis planning : assuring that right people, data and facilities will be in place 
at the right time to do the job. 

Definition of the physical structure to be analysed and the sources of authoritative 
data describing it - especially the physical features of the structure which are 
considered relevant. 

Definition of the structural context of the analysis: i.e. what other structures or 
boundary media attach to and interact with the structure, what external and internal 
loading and temperature conditions apply etc. 
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Definition of purpose and nature of the analysis: what kind of results are being 
sought and 'for what stage in the design, or approval process are they intended; what kind 
of solution(s) are required and to what notional accuracy. 

Formulation of the problem in broad finite element terms: how available F.E. solution 
procedures can be matched to the requirements; how structure loadings, boundary 
conditions, inertias, constraints can best be represented in broad terms; any special 
mathematical formulations required for adequate problem representation.   One important 
aspect of problem formulation is treated in some detail later: this is an "Engineers' 
Theory" of matrix structural analysis. 

Definition of the solution context: i.e. what people and facilities are available, 
what computing time and/or cost is admissible, above all what is the deadline for delivery 
of valid answers? 

Definition of solution requirements and presentation i.e. an explicit description of 
what results should be presented and in what form; in particular, how results should be 
processed, selected and presented so that users can understand and interpret them. 

3. Analysis Planning 

Someone, preferably an experienced supervisor, must first decide who is to carry out 
the analysis and whether that person or team is adequately experienced or qualified to do 
so.   Again, in the U.K., NAFEMS has set out some guidelines(2) to help to establish 
analyst competence and ways of building up such competence.   The analysis team must 
collectively have adequate understanding both of the structural design or validation 
problem under study and of the use of finite element methods to solve it.   If the avail- 
able staff do not already meet the requirement, either training or external consultation 
are necessary, and must be provided. 

Incompetent analysis is worse than no analysis! 

Data must be available from an authoritative source, at whatever level is appropriate 
to the status of the project under study.   In a large organisation this means having 
adequate drawings or sketches, loading, temperature and inertia data to a common product 
standard - all synchronised to fit into the analysis schedule.   Other peoples' work must 
be co-ordinated with that of the stress analyst. 

Incompatible data invalidate an analysis before it has begun! 

Computing resources must be available on an adequate scale at the time required. 
This means making an early estimate of the size and scale of the job being undertaken and 
ensuring that it can, if necessary, be broken down into manageable stages which will fit 
into computing schedules. 

Loss of data or delays from computer overruns are failures of the job planner, not of 
the computing service. .. ^ . 

Special attention may need to be given to the use of automated data preparation and 
results interpretation facilities.   Often there are limitations to their availability: 
they may use particularly expensive and overloaded equipment or there may only be a few 
people skilled in their use.   Planning must take a realistic view of these issues. 

4. Definition of the Structure 

In aerospace, it is very unusual for an analysis of a complete vehicle to be 
performed as one job.   In those rare cases, the very complexity of the physical object 
is such that it is usually necessary to make some restrictive assumptions about the 
structure to be represented. . 

In almost all cases, therefore, the analyst must first decide on the physical bounds 
of the structure to be solved.   Usually we break airframes down into major components 
such as wings, fuselages, empennage structures, etc. or further into structural boxes, 
fuselage bays, bulkheads, floor structures or such substantial sub-components.   Usually 
these represent physically bounded structural regions - often actually manufactured as 
individual, self-contained items. 

In all but the most local analyses (such as stress distribution in a single detail 
part or a local region of a component) the real structure will comprise many separate 
parts, all with finite section dimensions, imperfect intersections, local offsets, gaps, 
packings and tolerances and the myriad features which characterise real, as opposed to 
idealised structure. 

Drawings and/or computer-based geometry define all the surfaces, datums, detail 
features and intersections; the real structure definition begins by referencing these 
sources.   Often the structure is being analysed whilst still in its formative stage - 
the drawings or sketches are undergoing change: it is necessary to identify the standard 
assumed at the time. 

What detail features should be represented will depend primarily upon the analysis 
purposes: here some judgment or experience may be necessary.   Usually there are two 
questions which may be asked:- 
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(i) do the analysis purposes require detailed information about stresses or 
distortions in the immediate vicinity of a physical feature (e.g. stress intensity in 
the neighbourhood of a particular notch or groove)? 

or   (ii) is the feature likely to have any noticeable effect on global distribution of 
stress (e.g. a large lightening hole in an important shear web)? 

These questions require an understanding of structural behaviour based on physical 
rather than on mathematical insight. 

At a later stage, a further question may arise:- can I handle all the features I 
want to represent in a single analysis?   This may lead on to a need for substructuring 
or superelement analysis - a consideration in my next lecture, but it must always be the 
purpose of the analysis rather than solution expediency which should guide the decision 
"to represent or not to represent" in the first place.   Yet, very often these questions 
are never even asked - as though their answers were pre-ordained! 

5. The Structural Context 

Two simple examples will illustrate the importance of the context - i.e. the 
structural environment in which the component actually performs its function. 

5.1 Tension Cleat 

One of the simplest, yet most puzzling structural components is the L-shaped cleat 
or club-foot fitting as shown in fig. 1.   Such fittings are widely used, for example, to 
transmit tension/compression loads from stringers across a transverse diaphragm.   To 
isolate the cleat from its structure and treat it as an independent item under prescribed 
loadings and boundary conditions as in fig. 1(a) is to ensure disaster.   The correct 
physical boundary conditions can only be determined by taking into account the distortion 
under load of the members which it connects - both the skin and/or stiffener on the one 
hand and the bolt, washer and support assembly on the other, as in fig. 1(c).   No amount 
of analytical refinement of the fitting itself as in fig. 1(b), (whether by finite element 
or any other means) can compensate for failure to place the component IN CONTEXT.   Errors 
of over 100% are commonplace in this type of problem, irrespective of the modelling of the 
fitting, unless the adjoining structure is adequately represented. 
5.2 Multi-hinged Control Surface 

A more obvious example of context concerns a multi-hinged structure such as the 
aileron or flap shown in fig. 2.   In its un-deflected position it can often be analysed 
fairly satisfactorily as though attached to a rigid wing structure, but if the supports 
are redundant it will always be necessary to take account of hinges and actuating 
mechanisms, whose flexibilities are comparable with those of the component itself. 

When the surface is deflected, as in fig. 2(b), we must either use design devices to 
alleviate the effects of those components of hinge movement in the plane of the surface 
(e.g. by use of swinging links) or we must consider the redundant interaction of the 
deflected surface with the wing as the latter distorts; the aileron may be two orders of 
magnitude stiffer, when flexing in its plane, as compared with out of plane.   A very 
obvious truth, yet one whichmost stressraen overlook once in their career! 

This is an extreme case, but it typifies a situation which characterises most 
aerospace structures.   Whilst we normally analyse components in isolation, all interact 
with each other at their intersection boundaries and the only correct solutions are those 
which consider adjoining structures together, subject to loads and distortions which 
originate on both  sides of the boundary.   Contact problems, where interaction occurs 
only in compression, with separation in tension , are a special case requiring non-linear 
treatment or inspired pre-judgment of the solution! 

In all cases where components interact at a structurally redundant interface we must 
perform some kind of substructure interaction, whether we formally set up a full super- 
structure analysis or use iterative approximations. 

6. Purpose and Nature of the Analysis 

We have already seen the importance of defining the analysis objective as the essential 
ingredient in deciding on the representation of structural features.   Obviously, the 
analysis purpose can be significant in many,other ways.   The whole strategy of modelling 
may be different if we are considering initial design, detail stress analysis up to 
ultimate loading or dynamic aeroelastic response within the normal flight envelope. 
Manageable dynamic or iterative redesign analyses will normally be treated more coarsely 
than detailed stress analyses.   Their loading and inertia representation may need to be 
the more subtly defined because of this. 

In any event a clear statement of purpose is an essential ingredient in a proper 
definition of the problem, before modelling begins. 

7. The Solution  Context 

Finite element analysis can today be carried out on anything from the humblest desk- 
top micro-computer to a prodigiously powerful supercomputer.   The capacity and speed of 
the machine available and the facilities (such as interactive terminals with pre- and post- 
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processor software) have an important bearing on how a structural problem should be 
modelled.   Very few problems are intrinsically so complex as to be totally insoluble by 
even a modest computer - but the amount of ingenuity needed increases as the capacity 
available decreases.   So much so that, for practical purposes, the machine capacity often 
sets limits on what is normally attempted.   In our own case, non-linear analysis is 
always limited to relatively small and local substructure regions and optimisation is 
carried out on models with hundreds rather than many thousands of elements - limited by 
our large mainframe.   A supercomputer is needed to extend the practical size limits and 
might then run into cost problems. 

Dynamic analyses, buckling, aeroelastic divergence, flutter, contact problems - all 
these are examples in which size will be limited to match the facilities available and the 
time and cost limits. 

Sometimes the facilities themselves give a false sense of what is practical.   For 
example, modern mesh-generating programs are so powerful that it is possible to create 
meshes of vast size and considerable complexity with relatively little effort.   Burying a 
problem in vast numbers of nodes seems easier than thinking out clever modelling devices. 
It is only when loads, inertias and sometimes even element details have to be defined 
consistently with the structure that the enormity of the task becomes apparent.   We may 
easily overload any but the largest computing facility and extend the elapsed time for 
producing evaluated solutions beyond acceptable limits by following the ever-finer-mesh 
route. 

Such judgments can only be made if we are clear from the outset what facilites are 
available.   For example, as already suggested above, loading data preparation is often 
the biggest single task faced by today's stress analyst.   So we need to know what data 
preparation aids are available for all stages of the analysis and what time and cost 
limits are acceptable. 

In a large company environment, where the mainframe or number-crunching supercomputer 
is simply there, available as a "free" resource to all who want it, it is easy to slip 
into careless attitudes where jobs take as long as they take and cost what they cost - as 
though these were unalterabale facts of life!   By any standards this is gross mismanage- 
ment both of resources and of timescale. 

8. Solution Reguirements 

To conclude this catalogue of the banal and the obvious, we must get into the habit 
of stating what we want.   Walk around almost any office using number-crunching computing 
and you see desk tops piled high, cupboards bursting, waste bins overflowing with un-read 
computer paper.   Either that, or rows of zombies in front of screens, searching for the 
answers they now realise they want and finding they are not available in the form required. 

Output requirements should be thought about, written down, and where necessary 
negotiated, before the job  begins, not when it is in its final stages.   Selectivity, 
automated or not, is essential to efficient use of results.   The computer can search for 
worst cases far more efficiently than the user - only when the unexpected happens does the 
human being really need access to the mass of data. 

So think what is needed, state what is needed and provide critera for selection before 
the event. 

9. Formulation of the Problem in Finite Element Terms 

When finite element analysis becomes a routine task, formulation of the real problem 
in F.E. terms often reduces to little more than the nomination of standard solution 
procedures.   If we adopt such an approach, we can set off on a wrong course before the 
first modelling decision has been made.   Very often it is possible to obtain numerical 
solutions to a problem without ever writing down a single equation - in routine cases 
this can become the norm.   Indeed, the use of matrix algebra to describe the solution  of 
specific problems rarely seems to be taught.   Mathematics are used to define the 
behaviour of elements and to define problem formulation in general terms.   But in- 
sufficient emphasis is normally given to a number of very simple concepts which place F.E. 
solution of problems on the same basis as, say. Engineers Bending Theory and the Bredt- 
Batho thin-walled tube theories. 

No conventional stressman would try to understand structural behaviour without 
recourse to these elementary tools.   The same stressman rarely uses the matrix equivalents 
in thinking about F.E. Analysis and as a result often makes gross errors of judgment in 
those very areas of structural understanding where his experience is strongest.   So before 
I start addressing any of the details of structural modelling, I would like to go back to 
first principles and look at some basic structural concepts expressed in the natural 
mathematics of finite elements, that is an Engineer's Theory of Matrix Analysis. 

10. Basic Concepts and their Associated Matrix Relationships 

There are several basic concepts which underpin the use of the finite element method 
to solve real physical problems.   They translate the classical principles of equilibrium, 
compatibility, energy minimisation and so on into the language of matrix algebra.   We 
consider:- 
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Discrete variables, generalised forces and displacements and correspondence 

Transformation of forces and displacements 

Co-transference, stiffness transformation and kinematic equivalence 

Stiffness matrix reduction and condensation 

and conclude with an example illustrating this "Engineers' Theory" in practice. 

10.1 Discrete Variables,Generalised Forces and Displacements, Correspondence 

The discrete force and displacement variables used in finite element analysis are 
often regarded as point loads and displacements and in some cases have that significance. 
More generally they are parameters, associated with physical points, which define force 
and displacement functions over different parts of the structure.   When stiffness 
matrices are written in terms of these parameters, they are usually expressed in terms 
of forces and displacements which correspond in the normal engineering sense, i.e. the 
displacements corresponding with a force parameter are those components which do work in 
association with the force components and vice versa.   Some of the common associations 
of corresponding forces and displacements are shown in fig. 3.   In particular, 
distribution of a force between points corresponds with a weighted average of point 
displacements, a balancing set of forces corresponds with a relative displacement and 
interpolated displacements correspond with weighted sums of forces.   More subtly, as 
shown later, the continuous interpolation of displacements corresponds with the 
integration of weighted body, pressure or line loadings, where the weighting parameters 
are the same as the interpolation functions.   The same line of reasoning carries through 
to a correspondence between strain - displacement and stress-force relationships. 

10.2 Transformation of Forces and Displacements 

For the average engineering user, the most important of all concepts to grasp is the 
simplest - that of transformation.   In any problem expressed in terms of discrete 
variables we may, for convenience, wish to change the variables themselves or their frame 
of reference.   We are all trained to deal with change of axes or change of co-ordinate 
systems from Cartesian to polar or surface co-ordinates.   These involve simple examples 
of transformations: the relationships by which quantities expressed in terms of one set of 
variables may be transformed to equivalent quantities expressed in terms of a second set. 
In finite element analysis we are most commonly concerned with linear transformations, 
i.e. those in which two sets of variables are linearly related to each other.   Linear 
transformations allow us to deal with change of axes, constrained degrees of freedom 
(simple or complex), symmetry conditions, repeated boundary conditions, rigid body move- 
ments, kinematics of mechanisms, reduced basis and modal analyses and many other common- 
place analytical situations. 

A linear transformation is written, of course, as a simple set of linear equations, 
expressing the vector of quantities in one frame of reference as the product of a 
transformation matrix times the vector in the other reference frame.   Thus a set of 
displacements Uj may be related to an initial set U by the equation Uj = Tj U.   Such 
transformations obey the simple rules of association, 
so that if U2 = T2 Uj and U3 = T3 Ug, then 
U3 = (T3 T2 Ti)U = (T3 T2 )Ti U = T3 (T2 Tj)U.   We cannot, of course, change the order of 
transformation and only in special cases - square, non-singular or one-for-one transfor- 
mations - can we invert them.   Simple change of axes, using identical numbers of mutually 
independent variables, is the commonest example of a reversible transformation.   If Tj 
is such a transformation then U = Tf^ Uj . 
A rectangular transformation, i.e. one in which the number of variables changes, usually 
has a great deal of physical significance.   Thus if T2 connects a larger number of 
variables U2 to a smaller number Uj the equation U2 = T2 Uj represents (multi-Point) 
linear constraints because we are saying that all the variables U2 can be expressed in 
terms of a smaller number of degrees of freedom Ui.   In many cases we can invert such a 
transformation in terms of a reduced (independent) set of the variables U2. 
Thus if 

kbj 
■^2a 

T2b 
Uj and T2a can be made square and non-singular 

•1 
Then     Ui   =  T2a U2a and U2b = Tzb    "^2 a   ^2 

Whence U2a 

U2b. 2 b T2a, "2a °^ [T2b ^t      I  -^ E^ = 0 ® 
which are constraint equations in standard forms. 

On the other hand,if T3 relates a smaller number of variables U3to a larger number 
U2, this represents an incomplete transformation.   There are now an infinite number of 
reverse transformations which satisfy the basic equation U3  = T3 U2.   Particular 
solutions can be obtained by adding rows to T  and dummy variables to U3until a square, 
non-singular matrix T3 is obtained 

[u3']=  [T3']"^    "^= E}]    C']    © 
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10. 3 Co-Transference, Stiffness Transformation and Kinematic Equivalence 

, In conservative systems, the concept of correspondence between forces and displace- 
ment can be extended to transformations in what Langefors called "the principle of co- 
transference."   If (r, u) and (R, U) are pairs of corresponding forces and displacements 
and if u and U are linearly related by the transformation u = A U, then forces R and r 
are linearly related by the transpose of the same linear matrix, applied in the reverse 

This is a simple consequence of conservation of energy and direction: i.e. R 
is not dependent on linear elasticity. 

If displacements u and forces r are related by a linear stiffness relation r = k_u 
then the principle of co-transference enables us to create the transformed stiffness K 
in terms of R and U. 

Thus, R = ATr=A'rKU = ATk  AU © 
This familiar result is normally derived directly by minimum strain energy or virtual 
work arguments, without pausing to state the co-transference principle.   In this 
presentation we suggest that co-transference is the "engineer's equivalent" of a work 
principle applied to linear algebraic transformations and is valuable for its physical 
significance.   Some simple examples illustrate the principle in action in some common 
transformation situations. ,..   ; , , 

The rigid link in fig. 4(a) couples points 1 and 2 in the u direction and for small 
deformations leaves v freedoms uncoupled.   We can express the constraint condition by 
the equation Ux = U2 and by so doing miss the equivalent force relationship.   If we write 

U E U 1 and the constraint equation can be written as 

or  T U where T 

The principle of co-transference tells us that the force R corresponding with U is given 
by 

R = TT X where X '■ [S] 
The same matrix equations apply if the link is inclined to the (u, v) axes but in 

this case the vectors U, X, U, X and transformation T take on a modified form. 

From fig. 4(b) Uj cos a + Vj sin a = U2 cos a + Vj sin a 
This equation can be used to eliminate, say V2 in which case 

(Ul U2) cot a + Vj = [C 1 -C] •Ul 
Vl 

LUZ. 

© 

Whence UE 

UI1 1 0 0 

Vl 0 1 0 Ul 
U2 0 0 1 Vl 

LV2J _c 1 -c_ Lu^ 
where C = cot a © 

T E 

10 0 
0 10 
0 0 1 
C  1 -C 

and U 
Ul 
Vl 
LU2J 

The forces R corresponding with the constrained displacements U are given by 

R = TT R where R 5 Xi 

Yl 
® 

t2J 

A more graphic example, which also illustrates a second principle, is rotation of axes. 
From Fig. 4(c) we see that 

U = is   in  the   same ul   ^     rcosa      -sina-j   ru'-j    ^^^.^^ 
yj |_sina cos oj   Lv'J 

U   E  r^l  and  T  =   p°^  «   -=i'^"1 
L v J |_sin a     cos aj 

form  U  =  T  U   if  we  write 
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The transformed forces R in inclined axes are given by 

R 3 I -^'. I =T''' R = [.-■] 
cos a   sina 

-sin a cos a 
(Z) 

which is obvious, in any case, by direct resolution.   Rotation of axes is a special 
form of transformation with another important property.   In this case we note that, by 
simple resolution, the reverse force transformation is given by 

T R as for displacements 

—    -1 T 
Whence R = T  R for any vector R and hence T 

„-1 

the characteristic property of an orthogonal matrix, 
three dimensions have the same property. 

Rotational transformations in 

It cannot be sufficiently emphasised that the identity of force and displacement 
transformations, as seen above, is a property only of orthogonal transformations 
(particularly axis rotations) whereas co-transference is a universal property of 
corresponding force and displacement systems. 

An important concept, which is easily understood and can be mathematically  derived 
via the principle of co-transference,is that of kinematically equivalent forces.   Let 
us suppose that the displacements v normal to a boundary AB as shown in fig. 5 are 
defined in terms of a finite number of nodal parameters U.   Then v = A(c) u where A{c) 
is a vector of interpolation functions in terms of the non-dimensional distance E,   along 
AB.   If we divide AB into n equal intervals, the displacements at the centre of each 
segment are given by:- 

V  = An U, where A^ is a matrix whose rows are obtained by substituting Jn for each 
segment into vector A(5). 

Co-transference tells us that the nodal forces R corresponding with U are given by:- 

R = AT P^, where p„ is the n-vector of forces on each segment. 

If we write p. , the force on the ith segment, as w,- 16 C ,• where w. is the normal load 
intensity along the edge 

Then R = 1 (I  A f w,. ) SCi ® 

becomes Which in the limit as n -> oo 

R = 1 / ' A'' (c ) w (c) dc 
o 

The forces R are described as kinematically equivalent to the continuous line 
loading, with respect to the displacement functions A {?). 

For example, if v is a cubic displacement defined in terms of displacements and slopes at 
A and B we have 

V = [(2 C 3 5^+ 1) 1(C^ 2 C^+ C ) (-2 5^+ 3c^) 1(C i')] rvA] 
©A 

VB 

LOBJ 

(© 

The nodal forces kinematically equivalent to a uniform line loading WQ are then, by 
integration:- 

R = 

YA' " J/2' 

MA 1/12 

YB 
~ 

,1/2 

MB_ -1/12 

© 

3 

and those equivalent to a sinusoidal loading WQ Sinn care 

1/n 

21/n 

\/n 

2vn 

10.4 stiffness Matrix Reduction and Condensation 

In many cases, especially dynamic response analyses, we need to reduce the number 
of degrees of freedom in a structure for certain purposes whilst retaining the detail for 
others.   We usually use the matrix equivalent of the Rayleigh-Ritz method and express 
the full set of degrees of freedom as a linear transformation of a reduced set of 
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displacement parameters and derive a reduced stiffness as before.   There are many ways 
of defining the interpolation matrix, relating the detailed degrees of freedom to a 
coarser set and the selection of the best of these is too complex an issue to be covered 
here in any detail. 

A specialised procedure, often called static condensation, is used in substructure 
analysis for isolating boundary stiffnesses from those of internal structure.   For this 
purpose we partition a stiffness matrix into regions a remote from and b at the boundary 
points and write:- 

K E 
ab 

K, K, 
■ ba   " bb. 

If a set of forces Rj is applied at the non-boundary stations a we have 

K, Ua + Kab Ub = R 

Whence boundary forces R. 

i.e. R^ = K, 

The condensed boundary stiffness matrix is given by: 

Ua= Kaa -'    (Ra ~Kab Ub)- -© 
^ba °a +   K 

bb "b 

a        aa 
J R 

a 
+ 

'^b     - ^a ab "b ■ 
--0 

which is, in fact, expressible as a particular case of matrix reduction as described 
above.   However, this particularly simple reduction is usually quite unsuitable for 
dynamic analyses because it physically represents the deformation of a structure loaded 
only at the points in domain b (i.e. under concentrated localised forces) when in dynamic 
or buckling analyses we need to represent deformations under distributed (e.g. inertia) 
forces whose resultants are represented by a reduced set of force magnitudes. 

Noting the equivalence, in mathematical terms, of corresponding force and displacement 
transformations, we can choose to define such transformations either by displacement 
interpolation (deflected shape functions) or by force combinations, whichever seems to be 
the more appropriate, physically. 

Another physically useful concept is to think of static condensation as the inverse 
of flexibility submatrix extraction.   For if the stiffness matrix K ig non-singular, 
its inverse F can be similarly partitioned as 

ba 

ab 

^bb 

in which case 

bb (K bb - K ia ' K.K )-' ab bb 
-1 or K bb = F, bb --© 

We cannot over emphasise the total distinction between static condensation (or its 
equivalent: flexibility extraction) in which stiffness is expressed in terms of a small 
number of freedoms with all other freedoms unconstrained and stiffness extraction in 
which all the unselected freedoms are fully constrained, usually to zero. 

10.5 A Concluding Example of "Engineers Matrix Theory" 

When structural assemblies are analysed as separate i 
boundaries, the analysis is usually treated, in the litera 
calculation. This assumes that all the substructures are 
solved as one large super-structure problem. More often 
various components will be analysed separately, using prel 
more than guesses, for the interface loads. Conversion of 
solutions and allowance for varying interface geometry (e 
forwardly handled by our simple theory, whilst often avoid 
F.E. texts! Consider, as in fig. 6, a wing initially ana 
R  at the attachment points (set a) of a flap. 

tems, interacting at their 
ture, as a formal substructuring 
analysed together aiid 

than not, in practice, the 
iminary values, sometimes no 
approximate to accurate 

g. flap deflection) are straight- 
ed as too complex in standard 
lysed with prescribed forces 

The wing deformations at points a under these prescribed loads (and those over the 
rest of the wing) are Uoa•   Define Kaa as the condensed wing stiffnesses (all other 
wing nodes unconstrained). 

Now suppose we carry out a flap analysis to determine the true set of forces Ra at 
the boundary. 

Additional deformations of the wing A U a are given by 

AU, K, 

Or U, U oa + K aa (Ra   Rna ) .© 
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Next look at the flap itself, for which we have a stiffness matrix 

K' = 
K ba K'bb 

in local (flap) degrees of freedom - where partition a represents the attachment 
freedoms to the wing.   In any flap configuration the local deflections Ug' are related 
to Ug by a transformation T which can be written down by inspection of the flap/wing 
kinematics. 

We write U = T U 'and correspondingly (R.'),, -T^ Rg, where the negative sign 
recognises that the reactions of the wing on t'he flap (Ra')„ are opposite in sign to the 
actions of the flap on the wing (Rj).   The transformation T is not necessarily orthogonal 
or even square, non-singular since it may incorporate partial releases such as sliders or 
swinging links to minimise unwanted interference loadings. 

The wing contributes an additional stiffness K ^^a = 
If loads R' = {Rj' R b' ^ ^^^ applied to the flap we have: 

TT Kaa T to the a partition 

(K + K  ' ) K 

ba bb 

T^ R, .0 
From which Uj' may be determined in terms of the, as yet unknown, interaction forces Rj 
Suppose we write the solution in the form  Ua' = Una' - B Ra 
where U oa contains all the terms involving locally applied loads 
Then U, = T U3 ' = T (U 

So   that   (Kaa   +TB)   Rj   =   T  U 33 '   -   U oa   +  K aa   R oa   - 

B R a) _ 
+ K = From the wing we have Uj = U oa 

'oa' 
Whence 
and stresses follow by substitution. 

-G) ad     '    a ua vu --  aa  -- ua V  V 

Ra is determined in terms of the known prior Solutions and all the displacements 

Examples such as this show that there is nothing difficult, either conceptually or 
mathematically, in formally stating and symbolically solving problems of interacting 
structures, complicated boundary conditions, internal or external constraints or any of 
the other practical problems of real structures which often cause difficulties, even for 
experienced finite element analysts. 

We contend that every engineer who is to use finite element methods for problem 
solving should acquire facility in the use of these simple concepts and techniques so 
that matrix manipulation of structures should become as familiar as Engineers' Bending, 
the triangle of forces, Euler buckling and the other standard concepts on which we base 
our understanding of structural behaviour. 
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a) Isolated cleat b} Finite Element Model c) Cleat in Context 
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Fig. 5 Kinematically Equivalent Forces 
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(b) Hinge Forces 
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Fig. 6 
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MODELLING FOR THE FINITE ELEMENT METHOD 

by Ian C. Taig 
British Aerospace pic. Military Aircraft Division, 

Warton, Preston. Lanes. PR4 lAX 
England 

SUMMARY 

Finite element modelling is not synonymous with mesh generation.   The complex 
structures typical of aerospace, and many other industries, give limited choice for 
clever mesh definition but contain  a host of features which need to be represented, 
either explicitly oir implicitly within the finite element model.   Topics covered in this 
paper include general modelling strategy, definition of a basic mesh, local modelling of 
structural features inclduing those which are below the basicmesh scale, element 
selection, load and inertia representation, kinematic constraints and symmetry.   All 
topics are treated in a non-mathematical way, relating decisions which the analyst must 
make to the known facts about the analysis in the way that experienced people make such 
judgments.   This naturally leads to references to expert systems which are seen as having 
a major impact in this field. 

1.    Introduction 

Modelling of structures for finite element analysis is the whole activity whereby a 
real problem in structural analysis is formulated in terms suitable for solution using a 
finite element computer program.   In its Guidelines to Finite Element Practiced), the 
U.K. National Agency for Finite Element Methods and Standards makes it clear that 
modelling is NOT synonymous with mesh generation, as much of the literature on the 
subject would suggest.   Determination of the appropriate mesh is but one aspect of the 
problem: many others are equally important and often give the analyst more difficulty. 
Likewise, accuracy of the finite  element solution, per se, is only one of several criteria 
which influence modelling decisions. 

The growing body of literature on mesh generation, optimum gradation and adaptive 
refinement addresses an important issue in relation to F.E. analysis of continuum 
structure, in which the complex boundary and the (homogeneous) material properties 
characterise the structure.   In aerospace structures this is rarely more than a small 
aspect of the problem facing the designer and stress Engineer(2, 3)j sometimes it is 
completely irrelevant.   In addressing the aerospace engineer, we start from the 
fundamental position that our structures are so complex that the lowest level of 
significant structural detail (e.g. small  holes, cracks, grooves, fillets etc.) is well 
below the scale at which a single comprehensive finite element model can explicitly 
represent it.   We think from the outset in terms of multi-level analysis (ranging from 
global to local) whether formally interrelated by sub-structuring or not.   The pre- 
dominant issue at the global representation level is the extent to which local features 
should be represented explicitly at all - not how the mesh should be best refined to 
provide accuracy in their vicinity.   At the local level, mesh refinement is a major issue, 
but so too is structural context (i.e. all aspects of the interfaces with adjoining 
structure).   Even at this scale, actual features such as discrete fasteners, composite 
lamination boundaries, fillets and lands can dictate practical, as opposed to optimal, 
mesh definiton. 

At all levels we are concerned about boundary conditions, load and inertia 
definition, realistic material behaviour etc., all to be represented at a cost and 
within a timescale we can afford as well as to give the accuracy we desire.   Many of the 
decisions to be made are heuristic, i.e. based on  judgment and experience, rather than 
mathematical  or algorithmic.   This is why they have received such scant attention in 
the scientific literature: a situation which is starting to change now that expert 
systems are becoming practically feasible and scientifically respectable{5). 

We attempt here to give a broad coverage of the subject by looking briefly at the 
following stages in modelling-.- 

High level structural representation (the generic types of elements to be used) 
and modelling strategy 

Basic mesh definition to represent the primary characterisitcs of the structure 
at an appropriate level of definition 

Local modelling of structural features, via explicit fine meshing, special 
elements or implicit representation in modified element behaviour 

Specific element selection; shapes, formulations and material properties 

Representation of local and distributed loads and inertias 

Kinematic boundary conditions: symmetry and constraints. 
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2.   Structural Representation and Modelling Strategy 

We begin by restricting our discussion to the structures commonly associated with 
aerospace: reinforced shells of great complexity, beam and framed structures and solid 
fittings of complex geometry.   We assume that the "real world" problem is adequately 
defined as recommended in the previous paper(4).   The first question to be addressed is 
what generic type of structural representation is appropriate: often the answers seem so 
obvious that the question is not asked,  but we should take the time, occasionally, to 
to review our standard practices.   Some high level issues which may arise are outlined 
below. 

2.1 Shells,Plates or Solids? 

For an aircraft fuselage or an undercarriage mounting bracket the answer to this 
question is obvious.   But what of the solid missile wing, the undercarriage oleo leg, 
the thick skin at the root of a composite wing, the one-piece forged or machined airbrake? 
For such structures a balanced judgment is needed, weighing the analysis purposes and 
accuracy on the one hand against cost and complexity on the other.   Some of the 
considerations affecting the decision are set out in Table 1 below. 

TABLE 1 

Choice of Shell or Solid Representation 

For Shell For Solid 

° Structure is of characteristic shell 
or plate form or built up from such 
members 

° Thicknesses small compared with other 
significant dimensions 

° Mainly interested in stresses at 
extreme fibres or in displacements 

° Homogeneous, isotropic material 

° Through-thickness or out-of plane 
shear stresses unlikely to be 
significant 

"   Cost or job size are serious limiting 
factors 

° Adequately proven solid elements are 
not available 

°   No efficient shell-solid transition 
elements are available 

° Structure is of general 3-dimensional 
form 

° Thicknesses are significant compared 
with other relevant dimensions 

° Stress distribution through the thick- 
ness is likely to be important, 
especially when there are stress 
raisers in the depthwise direction 

° Strength through the thickness or in 
out-of-plane shear is lower than in- 
plane 

° Progressive non-linearity may develop, 
moving in from the surface 

° Specialised solid elements (e.g. ortho- 
tropic sandwich core) provide efficient 
representation of densely - packed 
structure or quasi-solid material 

Similar questions arise in frame and beam-type structures where we must decide on 
line elements versus representatively modelled sections. In all cases, we recommend 
that, other things being equal, the simplest representation is the best! 

2.2  Membranes or Plate/Shells; Facets or Curvature ■ 

At first sight it may seem pointless to use facet membrane representation of any 
curved shell when there appear to be plenty of shell elements available.   But not only 
are there order-of-magnitude size and cost differences, there is also no such thing as an 
impeccable curved shell element, which can be reliably used (and interpreted by ordinary 
mortals) without significant added complexity.   One need only cite the old problem of 
the rotation component normal to the shell surface (and the many dubious practices used 
to suppress or circumvent it) to realise the practical difficulties. 

In academic circles, the use of lower order elements (e.g. linear isoparametrics) 
is almost unknown, yet in industry, where complex built-up structures are being analysed, 
these are still the norm.   There are good reasons for this, despite the readily 
available evidence that "higher-order is better" from a cost: accuracy viewpoint.   Linear 
elements are both easy to use and understand and are reliable (if not precise) in perform- 
ance.   They can be safely used in conjunction with statically equivalent loads without 
needing to bring in the added complexities of kinematic equivalence.   Furthermore, if the 
structure (at the scale of the F.E. analysis mesh) is not a continuum, but an assembly 
(or intersecting network) of discrete members, then all theoretical advantages of higher 
order elements can be lost. 
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The issues which affect these high level representation arguments were explored in 
some detail in a recent expert systems project(5).   For example. Fig. 1 shows a so-called 
called inference net, taken from ref. 5 which indicates how a recommendation to use 
membrane (as opposed to flexural) representation was derived. 
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Without going into detail, the diagram shows that three factors influence the strength of 
recommendation in favour of membrane representation:- (the predominance of) membrane 
loading supports the recommendation whilst (the presence of many) unsupported nodes and 
(the probability that the skin is) offset sensitive oppose it.   Bayes' rule provides a 
means of combining and weighting these factors, to emulate balanced human judgment.   The 
three influencing factors are themselves derived from other considerations such as 
analysis purposes or (the use of) brittle material, ultimately leading back to direct 
questions to be asked of the analyst, such as (is there significant) normal pressure (not 
reacted by circular curvature or closely spaced supports)?   The judgments are seen to 
be complex but they lead back to questions which are individually quite simple.   The 
expert systems methodology provides the first practical way of making such judgments, 
and their associated questions, readily accessible to people without wading through 
impossibly - complex manuals. 

2 . 3  Symmetry or Repeated Structures 

As a general rule,if symmetry i 
reduce the problem size; likewise if 
are repeated.   In some analysis sys 
it can give rise to a great deal of 
be structurally symmetric over part 
Whether or not we take advantage of 
we can combine symmetric halves (and 
asymmetric portion of the shell to o 
of this task, to say nothing of the 
doubled size for part of the analysi 

s present in a structure, take advantage of it to 
structural patterns (and their boundary interactions) 

tems, this poses no practical problems but in others 
complexity.   For example, a fuselage structure may 
of its length and asymmetric over another part, 
symmetry, where it exists, depends upon how readily 
their, usually, asymmetric loadings) with the 

btain the overall solution.   Often the complexity 
false starts and re-runs, makes the alternative - a 
s - look very appealing! 

If fully automated and clearly explained facilities are not available in the finite 
element system being used, it is foolish to enter this minefield without first acquiring 
some manipulative skill in symbolic problem-solving using the "engineers' theory" of 
matrix analysis of the previous paper(4) or its equivalent.   It requires some skill 
and experience just to get signs right and to avoid errors by factors of 2! 

We always recommend that trial runs on small problems be carried out and validated 
before attempting large analyses.   Time must be allocated for building up this 
confidence - it will usually be repaid in fewer abortive runs. 

2.4  Modelling Strategy 

We have already touched upon some of the stratigic issues which must be settled at 
the very start of modelling.   We now look at some of these more systematically. 

°   Mesh scale in relation to features 

Many aerospace structures are designed and built as roughly rectangular assemblies 
of skins, supporting members, stiffeners and so on.   The pattern of actual members 
dictates a (possibly more than one) natural mesh scale, simply by following structure 
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intersections and improving proportions by regular sub division of slender panels. 

Basic mesh dictated 
by spar pitch 

Local refinement 
for major structural 
features 

Fig. 2 Wing Internal Structure and Design Analysis Mesh 

The wing shown in fig. 2 is an example of a structure whose natural mesh is clearly 
dictated by the closely spaced spars.   Whether this natural mesh is not fine enough, 
just right or too fine for general analysis is a question which must first be related to 
the analysis purposes and perhaps modified by size and cost considerations.   With today's 
company computers it is rarely necessary to go coarser than the natural grid defined by 
the major supporting members (spars, ribs, frames, bulkhead  etc.) but equally rarely 
feasible to get down to individual skin stiffeners for closely-pitched stiffened skins. 
It is almost never feasible to represent skin stiffeners in full section detail in a 
single pass analysis.   We showed in a recent AGARD discussion paper that such an 
analysis might require 10^ nodes x 6 dof. per node for a wing, more for a fuselage - a 
huge task for multi-case, multi-purpose analysis, for pre- and post-processing and for 
information handling. 

°   Super-modelling and Sub-modelling 

A totally different approach to modelling is appropriate if we choose a basic mesh 
scale much finer than the natural mesh as opposed to a similar or coarser scale.   In the 
former case, which I shall subsequently term super-modelling we can base decisions on the 
continuum analysis reasoning favoured by the academic community.   In the opposite case, 
hereafter called sub-modelling, continuum  strategies are largely irrelevant.   As 
suggested above, most major airframe components will fall into the sub-modelling category. 
Super-modelling will be confined to local regions and isolated structural members.   The 
divergence in strategy is indicated in Table 2 below. 

TABLE 2 
Indications for modelling strategy related to mesh scale 

Super-modelling 
(more mesh than features) 

Sub-modelling 
(more features than natural mesh) 

°          Graded meshes refining in regions of 
geometric or load-induced stress 
concentraion 

°   High order elements indicated 

°    Explicit representation of the 
relatively few major structural members 
with mesh density appropriate to 
significance 

°   Stress gradients, principal stress 
contours, energy densities guide mesh 
definition 

°    Meshes in multiples or sub-multiples 
of basic mesh, determined by structure 

°    Simple, low order elements indicated 

"   Minimal (single line or panel) 
representation of major skin-support 
members 

°    Mesh refinement, in local sub- 
multiples of basic mesh, only at most 
significant stress raisers 

(continued over page) 
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TABLE 2 (continued) 

Super-modelling 
(more mesh than features) 

Sub-modelling 
(more features than natural mesh) 

°    Accuracy principal criterion 

°          Adaptive refinement and post- 
analysis correction are appropriate 

°    Sub-scale features normally 
implicit in standard mesh elements; 
representation by subsidiary 
analysis, special elements and sub- 
structuring 

"          Convenience, size, cost the 
principal criteria 

Substructurinq and Superelements 

Substructuring  is a device for breaking down an analysis into manageable parts.  Only 
if there are several identical and repeated substructures does it offer any savings in 
either elapsed time or solution cost.   Usually it adds a great deal of complexity to 
the analysis specification and actually increases the overall job size.   We must 
distinguish between substructuring which is only recommended when there are sufficient 
supporting reasons, from partitioned data preparation, which breaks down the modelling 
process but not the solution into manageable and natural parts; this is recommended for 
all large and fairly complex structures. 

Reasons which support substructuring, in roughly descending order of importance are:- 

°    Relative geometry of adjoining structures changes (swing wings, deflecting control 
surfaces, etc. etc.) 

°    Different analysis teams assigned to tasks. 

° Single-pass analysis exceeds available computing time slot (may be better to try a 
bigger computer!) 

°    Localised iterations required, e.g. non-linear analysis, contact problems etc. 

°    Several components very sparsely connected (higher priority if nearly statically 
determinate) 

°    Multiple, repeating substructures (but probably better to use modified stiffness 
matrix assembly) 

Remember that substructuring, taken through to rigorous solutions, complicates 
structure and load definition, solution (especially for dynamic and iterative solutions) 
and verification.   More errors are likely and there are no pre- and post-processing 
advantages compared with simple data partitioning. 

VJhen substructuring is used it is often necessary to analyse substructures 
independently with approximate (e.g. coarse mesh) interface conditions and only to carry 
out full interaction if there is reason to suspect that the interface conditions are 
causing local disturbances in stress patterns. 

There is a special form of substructure analysis, involving generalised prior 
solutions of standard components, considered later under the heading of implicit 
modelling. 

Another simplifying device is to analyse smaller structures whose boundaries overlap 
so that St. Venant's principle can be allowed to do its work and we make two estimates 
of behaviour in the overlap region. 

3.   Basic Mesh Definition ■■ '' ' 

Having discussed some of the strategic issues which depend upon the mesh scale in 
relation to real structure, let us now return to the mesh definition in a little more 
detail. 

It is implied in the nature of most geometric pre-processor systems that structures 
to be analysed comprise, components bounded by a relatively small number of continuous 
surfaces.   It is predicated that the analyst's problem is to create a mesh by inter- 
polation between the relatively coarse defining boundaries and that there is freedom to 
select intermediate mesh lines for convenience and accuracy.   As we have seen already, 
this situation can apply when we are able to adopt super-modelling strategy, i.e. when 
dealing with relatively, small, self contained components.   For the large majority of 
aerospace structures we are in a sub-modelling situation, where the defining boundaries 
of the structure are already very complex and, whatever scale we choose for analysis, 
there will usually be significant structure features at a smaller scale.   Only in very 
local regions, where significant features are sparse, do we have the luxury of free choice 
of intermediate mesh lines.   At the most we deal with standardised ways of blending a 
local mesh (such as a ring of nodes around a large hole) into a more-or-less rectangular 
pattern. 
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To formalise the discussion, we consider mesh definition in two parts:- i) creation 
of a basic mesh pattern which is directly related to the pattern of structural members 
and where the principal considerations are scale of the mesh and proportions of the 
elements 

ii)  modification of the basic mesh to account for special structural features 
this the local mesh and will consider it further in the next section. 

we term 

3.1  How Fine is Fine? 

We normally describe a mesh as coarse or fine  and naturally associate these 
qualitative descriptions with the purposes of the analysis.   Whilst these terms are self 
explanatory to the experienced analyst, they need some numerical interpretation for 
guidance of the relative novice; this depends on the size and complexity of the structure 
being analysed.   For structures like aircraft wings and fuselages, coarse usually means 
representing all major intersecting members and doing no more than making a few integral 
sub divisions of natural bays of high aspect ratio.   The natural mesh thus defined in 
fig. 2 would therefore be described as coarse.   Where there are few intersecting 
members, for example in a sandwich core-filled flap as shown in fig. 3, a coarse mesh is 
defined by the minimum number of stations needed to give reasonable stress and displacement 
patterns across the lesser plan form dimension.   Five or six stations across the width, 
corresponding pitch along the length and no additional stations through the thickness 
will be most peoples' idea of a coarse mesh. 

No significant structural detail except 
hinges and edge members 

Minimum mesh chosen to represent 
continuous flexure and torsion 

Fig. 3 Minimum Mesh for a Simple Flap 

In the expert system described in, ref. 5, the following formula is used (in a 
"fuzzy" sense), for topologically cylindrical shells, to define the coarsest or minimum 
mesh size for a shell with few intersecting members. 

Minimum mesh size '. 50 X (1 + 0.6 X Depth-ratio) x Aspect-ratio 
Symmetry-factor 

where the symmetry factor is 1.8 for single symmetry, 3.5 for double symmetry and 1 for 
no symmetry. 

The flap of fig. 3 with no symmetry, aspect ratio 4 and depth ratio 0.1 evaluates to 
212 nodes which compares with the 231 nodes shown for 6 chordwise stations.   The formula 
applies to within about 20% for a wide variety of shell cross sections, but needs 
modification for multi-surface shells (e.g. fuselage with internal floors, walls or 
engine tunnels and ducts). 

Returning to the more complex structures such as fig. 2, the decision whether or not 
we need a basic mesh finer than the natural one depends on our assessment of "how fine is 
the natural mesh already?"  A measure of this is the natural mesh ratio defined as 
Natural mesh.   To complete the formal description of the decision process we have 
Minimum mesh 

categorised analysis purposes into three broad groups:- 

°    Coarse purposes are those which create no special demands for refinement beyond 
the natural mesh 

°    Fine purposes are those which may require refinement dependent upon the magnitude 
of the natural mesh ratio 
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°    Very fine purposes are those which certainly require a finer level of detail than 
that provided by the natural mesh. 

Refinement in this context means integral sub division of natural mesh pitches and 
maintenance of element aspect ratios in an acceptable range (we normally use *5 to 2 for 
skins, up to 5 for internal webs, with "near square" the preferred shape).   Examples of 
categorisations which we have adopted (as general guidelines subject to override by the 
analyst) are tabulated below. 

TABLE 3 
Categorisation of Analysis Purposes 

Coarse- Purposes Fine Purposes Very Fine Purposes 

Initial sizing of structure 
Global optimisation 
Global flexibility 

Design stress analysis 
Global static stability 
Post-buckled, quasi-static 

Check stress analysis 
Fracture mechanics 
Laminated structure 

determination 
Static aeroelastics 
Global dynamic response 
Dynamic stability (flutter) 

response 
Damage tolerance analysis 
Thermal response 
Global + local dynamic 

response 
Panel flutter 

analysis 
Global + local stability 
Acoustic response 

Combining all these factors with others pertinent to particular tasks makes the ultimate 
decision complex and subjective.   But in the end we came down to a relatively simple 
choice: "one, two, three or more sub divisions of the natural  mesh, or none at all?" 
Numerical assessments are possible but they can only be approximate, within rather large 
tolerances.   One way of dealing with this, in expert systems design, is to give weighted 
recommendations based on formulae and fuzzy set theory so that we might advise the 
user (based on information on purposes and knowledge of the natural mesh proportions):- 

No-sub-division 
1 sub-division 
2 sub-divisions 
3 sub-divisions 

0.07 
0.56 
0.32 
0.05 

Strengths of recommendation 
in range 0-1 

making it a matter of personal preference or convenience which option to adopt.   We use 
this approach frequently in our FEASA system(5). 

3.2  Graded Meshes 

The previous discussion relates to a "typical" mesh which is implied to apply fairly 
uniformly over a structure.   If we are in  the sub-modelling situation (with more 
features than mesh points) this fairly uniform coverage is usually appropriate.   But in 
situations like the flap in fig. 3 it is obvious that the major load concentrations and 
localised deformations will occur in the immediate vicinity of the hinges.   The uniform 
mesh of fig. 3 is clearly not ideal and we are faced with two basic options: a) treat the 
hinge zones as local features and use local sub division and blending techniques as 
discussed later in section 4. 

b) use a gradually graded mesh in which a smooth transition is made between the 
uniform mesh remote from the hinges and the local mesh defined by the hinge geometry and 
attachment features. 

Mesh gradation is a topic in its own right with an extensive and of ten esoteric 
literature.   Basically there are two distinct approaches, namely a priori methods, in 
which we base decisions on knowledge available before analysis, and a a posteriori 
methods in which we use the results of one or more analyses to improve a trial mesh. 
The latter topic leads on to self-adaptive mesh refinement, hierarchical elements .and 
many other topics outside the scope of this lecture (see, for example, Babugka(6), 
Zienkiewicz(7) and Brandt(8) ).   A priori methods rely heavily on experience to know how 
fine to make the local node spacing and how to blend into the remote mesh.   Often, if 
automatic mesh generators are used, the options for blending are very limtied.   Regions 
of structure must be sub divided into combinations of topological rectangles and/or 
triangles with a limited range of possibilities for specifying interpolation 
parameters.   In arriving at a judgment, the practical engineer will take into account 
many factors in addition to accuracy, for example:- 

Profiles of thickness changes or laminations 
expected principal stress trajectories 
mesh continuity for ease of presentation and interpolation 
maintaining sound element proportions 
picking up sub-scale features such as bolt holes 

My own preference is to keep to near-square quadrilaterals and if necessary to sub-divide 
without blending, by using constraints on boundaries where nodes are incompatible. Standard 
blending patterns, such as from squares to circles with approximately geometric 
progression in mesh spacing, fit well with use of automation. 
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4.   Local Modelling of Structural Features 

This is perhaps the most important aspect of the whole modelling topic for the aero- 
space engineer.   Knowing what to represent, how to represent it and in how much detail 
is the art which separates the expert from the novice, the good analyst from the bad. 
In the previous paper we emphasised that it is pointless to try to achieve more than 
finite element analysis can deliver.   Stress concentrations at tiny holes, crack tips 
and so on are best dealt with by appropriate local analysis, which is not to say that the 
products of such analysis should not be incorporated implicitly in the F.E. model.   What 
we want to avoid is the pursuit of indefinitely fine meshing in regions of near 
singularity. 

In a recent paper(9) we introduced (or more accurately gave a respectable name to) 
implicit modelling and implicit mesh refinement as the pragmatic alternatives to explicit 
fine meshing and comprehensive substructure analysis.   They are, in fact,concepts which 
have been embodied from the very first day that finite element analysis was used in anger, 
yet this may be the first attempt to give them systematic consideration.   The first issue 
in local modelling is thus to answer the following question. 

4.1  Explicit or Implicit Modelling? 

We are now looking at sub-scale features of the structure, i.e. structurally 
significant features whose defining geometry is at a smaller scale than the basic grid, 
previously discussed, and at major features which perturb the basic grid, such as cut-outs 
and doors in otherwise continuous skins.   The alternative approaches are:- 

°    Explicit modelling in which we represent the important geometry of the features by 
appropriate local mesh and element selection and blend in to the basic mesh 

Implicit modelling, in which we continue the basic mesh with no more than minor 
changes (duplication of occasional nodes to allow flexible coupling is as far as we go) 
but modify the section properties of elements and/or their materials so as to simulate 
the effect of the features as seen by adjoining structure.   When using implicit modelling 
it is assumed that the analysis will yield good boundary conditions to enable a sub- 
sequent local analysis of the features to be performed.   Implicit modelling is thus a 
hybrid form of substructure analysis which may or may not use F.E. methods at the detail 
level.   If F.E. methods are used we give the process the special name implicit mesh 
refinement. 

As far as the global analysis is concerned, these issues are transparent; there is 
absolutely no complication of the analysis compared with a straightforward model with no 
local features.   Once more we are faced with a judgment which owes more to engineering 
appreciation of behaviour and practicalities of analysis operation than to finite element 
theory.   In table 4 we list some of the influencing considerations. 

TABLE 4 

Factors Indicating Explicit or Implicit Modelling 

For Explicit Modelling For Implicit Modelling 

Large scale of features (comparable with 
or greater than basic mesh size) 

Major fixtures such as mounting fittings 
carrying significant loads 

Critical importance of investigating the 
features, per se, particularly if  

No adequate local treatment available 

Small scale of individual features 
(relative to basic mesh) 

Large numbers of similar features 

Adequate theoretical treatment, given 
characteristic load levels (e.g. fracture 
mechanics, standard stress raisers, etc.) 

4.2 Explicit Modelling - Nodes or Know-how? 

When we decide to 
choice - whether to us 
subsidiary analysis to 
let the F.E. method so 
as a potential use of 
analytical skill. In 
a dangerous practice, 
manipulation time too. 

represent features explicitly we are still faced with an important 
e a relatively coarse representation, relying on understanding and 
fill in the detail or whether to "bury the problem in nodes" and 

rt out the details.   In the extreme, the latter approach is cited 
supercomputers - to solve complex structures without any need for 
most cases, reliance on nodes in lieu of physical understanding is 
It is certainly expensive in solution time and possibly in data 
There are, of course, cases where it is wholly appropriate. 

For example in a very complex stress and deformation situation, such as might arise at an 
access panel in a laminated composite skin (with single sided reinforcement) as shown in 
fig. 4, local fine meshing may be the only feasible solution.   The combination of edge 
effects, local fastener holes, asymmetric reinforcement and local non-linear behaviour 
makes it advisable to isolate the region as a substructure which can be analysed to a 
degree of refinement impractical over the structure as a whole. 
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Substructure boundaries 

Bolted cover, 

En ={- 

Asymmetric reinforcement 
and land 

Fig 4 Plate with Access Hole - Quadrant of Substructure 

More generally, however, we would recoiranend relatively coarse meshing, to obtain the 
stress or displacement trends in the region rather than directly estimating peaks.   In 
the common case of stress raisers at cut-outs or fillets it is well known that the F.E. 
method usually displays the classic features of the law of dimimishing returns.   In a 
NAFEMS benchmark test, (10, 11) typical convergence to a correct peak stress is 
illustrated in fig. 5 
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Pig. 5 A NAFEMS Benchmark Test Showing Convergence Rate 

The coarsest solution, using a ring of 2 x 4-noded straight-sided quadrilaterals around 
periphery, returns 81% of the correct answer at the peak stress point.   Using a faired 
curve either along the centre line or around the hole periphery the same analysis can 
yield 95% of the true solution, as good as we can obtain directly from three times as 
many nodes. 



.3-10 

So we would suggest that, for modelling cut-outs and fillets, a normally fine mpsh 
may use 3 elements, 4 or 7 nodes per quadrant around a curved boundary, 2 elements, 3 
or 5 nodes per half side at a rectangle.   At most, 2 rings of such elements may be needed 
before blending into the basic mesh.   Very fine analysis may double the numbers of 
elements and beyond this we are dealing with individual cases to be treated on their 
merits. 

Representations 

13/ Plexural plates 
6 d.o.f.per node 

(b) Membrane plates 
3 d.o.f.per node 

(C) Offset beam 
No additional d.o.f. 

Pig. e Alternative Modelling of Skin Stiffener 

Taking another quite different example, a stiffener supporting a skin, as shown in 
fig. 6, is better represented by a "cubic" beam with offset attachment and shear 
deformation (at 1 node x 4 d.o.f. per node, per longitudinal station) than by membrane 
flats (at 3 or 4 nodes x 3 d.o.f.).   If we are concerned with interaction between 
stiffener and skin stability, we can either treat this by continuous stiffened skin 
analysis using stress levels derived from the beam representation or adopt a full flexural 
treatment of the stiffener allowing for attachment at the fastener line, needing 5 or 6 
nodes x 6 d.o.f. per node.   This complexity is very rarely justifiable as it is question- 
able whether there is any improvement in accuracy. 

4.3  Explicit Modelling - Joints and Attachment Fittings 

In airframe structure analysis, a most important, yet often neglected modelling 
consideration is the representation of joints and associated fittings.   Bolted, riveted 
and even bonded joints can contribute significantly to overall structural flexibility. 
Attachment brackets, with their pins, bushes and fasteners, have a major influence on the 
distribution of load in our structures.   In assessing the flexibility of joints it is 
always necessary to look at the details of load transfer because we often transmit sub- 
stantial loads through thin material in flexure or via pins with significant offsets. 
However it is rarely necessary to represent this detail explicitly in any other than the 
most detailed local analyses. 

Pig. 7 

Bolt tension and flexure 

Bracket flexure 

Pin bearing 

Pin flexure 

Walor Plexibility Contributions in a Mounting Bracket 

e flexibilities 
tension and bending) 
ligible 

Usually, explcit modelling of a joint and its fixtures means representing all major 
attachment points (e.g. lug centres) as structural nodes, either individually or at 
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stations representing local node groups.   It is always necessary to identify separate 
nodes on two' sides of a joint and represent flexible material between them.   In represent- 
ing attachment fittings we need to be careful to provide stiff load paths in the plane of 
webs and flanges and flexible paths out of plane.   Where significant loads are transmitted 
in flexure,  as in the base of the bracket in fig. 7 (or the cleat in fig. 1 of the 
previous paper) it is important to remember that it is flexibility, not stiffness, which 
matters.   Thus if we are to ignore anything in these fittings it is the high-stiffness 
in-plane-loaded parts, not the flexible, flexurally loaded parts of the load path.   It 
is always better to make a simple engineering estimate of bracket flexibility by assuming 
load paths and summing strain energies in the varies members than to ignore the fittings 
for lack of meaningful data.   Better still, use the implicit modelling approach of ref. 9 
and run some typical F.E. analyses on various brackets and derive flexibilities at their 
attachment points therefrom.   One or two analyses may be sufficient to define represent- 
ative flexibilities for 10 or more flap/slat/aileron/airbrake mounting brackets or 100 
cleats. 

Simple lap, angle and buttstrap joints depend more on the flexibility of fasteners, 
bending in sheets and plates with offset loadings, than on the flexibility of the fittings. 
Until recently, data on joint flexibility have not been widely available, but this is 
now being rectified to some extent by ESDU(12).   Fig 8 shows a typical curve for stiff- 
ness of titanium bolts in aluminium alloy skins. 

k = Foundation stiffness per unit thickness = 0.18 x Ep],te 

S = Stiffness of single bolt joint 

Steel bolts in 
aluminimum alloy 

Clamped head 

Titanium bolts in 
aluminium alloy 

Pig. 8 

1    2 

Bolted Joint Stiffness Data (Bolts in Single Shear) 

t/d 

The commonest joints in sheet and plate structures are continuous line joints.   In 
these it is rarely necessary to model individual fasteners, so data as in fig. 8 are 
normally used to estimate stiffnesses related to pairs of approximately coincident nodes 
at basic grid spacing.   Stiffness at these nodes represents the aggregate behaviour of a 
group of fasteners and improved accuracy can be obtained by allowing, say, linear 
displacement variations between adjoining elements at a joint. 

Individual fastener modelling, or at least higher order relative displacement 
functions, may be needed in load diffusion situations, such as the end of a stiffener or 
reinforcement.    Fastener load peaks rapidly towards the end of the member so that the 
first two or three fasteners may carry the bulk of the load.   Even in this case we can 
get very good results from a coarse analysis if we use a little subtlety in deriving the 
equivalent joint flexibilities.   We can carry out a subsidiary calculation of load 
distribution at a stiffener end and calculate equivalent 'lumped' fastener flexibilities 
using, for example, a  careful strain energy analysis.   For complete load transfer at a 
multi-fasterner overlap joint, ESDU(ll) provides a simple computer program to determine 
effective joint flexibility. 

4.4  Implicit Modelling or Use of Equivalent Stiffnesses 

As soon as we decide to perform an analysis at a scale larger than that of many 
structural features we must decide what to do about those features.   Our options are:- 

(i)   model them explicitly and in some detail, as above 
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(ii) model them explicitly but at a coarse scale as suggested for continuous line 
joints. 

(iii)  represent them implicitly by modifying basic element properties 

(iv)  ignore them altogether and correct the results by subsequent local analysis 

Option  (iv) is favoured by most stressmen for obvious reasons and in many cases it is 
perfectly valid.   The criterion to be used is whether or not the local features will 
have any discernible effect beyond the boundaries of the element in which they occur. 
Features which are continuous or frequently repeated, such as stiffeners on a skin or a 
series of lightening holes in a web, cannot and would not be ignored in any circumstances. 
Most sub-scale features can be classified as reinforcing (stiffeners, bosses, lands etc.) 
or weakening (holes, grooves, notches etc.) or  joints.   As a rough guide, such features 
can be ignored under the following circumstances. 

Feature Type Can be ignored if:- 

Reinforcing features Reinforcement is not continuous AND 
Aggregate volume of reinforcements 
<10% of basic element volume 

Weakening features No more than 20% section lost in any 
continuous loadpath across the element 
AND 
Aggregate volume of perforations 
<5% of basic element volume 

Joints Aggregate flexibility over periphery of 
element <10% of element flexibility 
under relevant uniform loading 

These rough rules are intended to ensure that the strain energy in the element with its 
features is within ± 10% of the basic element under any relevant loading. 

Coarse-scale explicit representation • ' 

This will be the normal method used for continuous reinforcing members, in 
rectangular or trapezoidal panels, as well as for many joints.   The earliest way of 
representing stiffeners was by lumping into equivalent edge members, which is the 
crudest coarse-scale device.   A better treatment in pure displacement or hybrid analysis 
is to apply consistent deformations along element boundaries using the identical 
interpolation forms used for sheet, plate or shell members and derive special stiffnesses 
at nodes, as in ref. 9.   If not available as standard within the F.E. system, it is 
fairly simple to add one's own special elements on this basis.   The alternative is a 
true implicit modelling method using "smearing" of stiffeners into an equivalent 
orthotropic sheet as discussed below. 

Modification of basic element properties 

This is usually the simplest method to introduce into a standard F.E. analysis as it 
involves no special mesh, no special elements and no solution complications.   On the 
other hand it may require the most work by the analyst if it is to be used effectively. 
It is the recommended practice for dealing with most weakening features, discontinuous 
reinforcements and continuous reinforcements if special elements are too difficult to 
implement. 

Considering membrane loading of plates as an example, then, if we assume that 
orthotropic material properties are available as a standard option, there are three 
material constants and an orientation angle which can be adjusted to simulate the 
behaviour of a modified basic element - four variables in all.   In most cases it.is 
sufficient to perform simple engineering analyses on single elements under constant 
direct shear and in-plane bending loadings in order to derive equivalent material 
properties.   Many standard formulae(3, 11) are available to determine such stiffness 
equivalents for commonly occurring features.   For example table 5 below is derived from 
ref. 3, in turn presented in ref. 11: it relates to the effective stiffness of shear webs 
with standard weakening features. 
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TABLE 5 

Equivalent Stiffness of Weakened Shear Webs 

Type of Web 
Effective Shear 

Stiffeners 
(equivalent Gt) 

Effective area A of web associated wih flange   | 

Beams in flexure 
Panels with low 
stress gradient 

Plain webs Gt 
bt 
6 

bt 
2 

Honey comb 
sandwich webs I  Gt for skins 

Shear-buckled 
plain web 

0.6 Gt Lesser of ISt" or bt/6 151^ 

Web with lightening 
holes Gt (1-D/ ) 

a 

bt 
6 

(b-D)t 
2 

Corrugated webs Gt (a/a . ) a 

Zero normal to 
corrugations 

Zero normal) (-Q 

££ parallel)corruga- 
2         )tions 

Web with shallow 
swages Gt Lesser of 15t^ or bt 

6 

15t^ normal) 

-T- parallel, swages 

Castellated webs 

Gt Zero along line of 
castellations 

zero along ) to line 

^normal  > of 
^        )castella- 

tions 

1 , a B  +  0.4 g^^ 
^ ' (1-a)     (1-a)- 

where:- a, b,t = web 

notch width 
pitch 

dimensions 

2 X notch depth 
plate depth 

= developed length 

plate depth 
notch pitch 

D hole diameter 

stiffeners and basic mesh 

Axes of 
orthotropy 

Plate reference 
axes 

Equivalent orthotropic plate 

Modelling of Stiffeners Below Mesh Scale 

In many cases, such as the "smearing" of stiffeners into equivalent orthotropic 
sheet (fig. 9) the element modifications are self-evident; in this example, the effective 
longitudinal modulus is given by 

^11 t Et 
1-v' 

or E  = E 
11 in the stiffener direction 

b 1-v'     bt 
Where E is the skin Young's modulus and y   is Poisson's ratio 

E  is the stiffener modulus and A  its area. s s 
Another common application of element property modification arises when we wish to 
correct section dimensions to allow for varying distance from a neutral axis of 
bending(2).   Typically we may use a (depth)^ correction for bending effectiveness of 
stiffeners which are idealised as though lying on a skin surface. 

5.   Specific Element Selection 

Which elements we use to represent our structure depend, of course, on what we have 
available, and on our basic modelling strategy.   In the case of plate and shell 
modelling there are usually most options available.   We have already considered the 
membrane versus flexure argument and the low versus high order choice, but'it is worth 
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re-stating some of our preferences:- 

"Generally, quadrilateral elements out-perform triangles of comparable node 
density though triangles are often easier to fit into graded meshes; we always 
recommend quadrilaterals wherever possible, triangles only for mesh blending in non- 
critical areas. 

°We prefer low order elements wherever we are sub-modelling (more features and 
details than mesh points) as they are simpler, easier to use and more reliable for the 
non-expert. 

°We prefer higher order elements in continuum analysis and super modelling 
situations, for their better accuracy and economy in regions of stress concentration. 

°We normally use pure displacement elements recognising that this is no more than 
historic attachment to familiar things. 

We recognise the practical advantages of stress-based or hybrid elements in giving 
boundary representations which are closer to the stressman's requirements than displace- 
ment formulations but are wary of difficulties in recovering true displacements and of 
unpredictable performance outside proven applications. 

°My own preference is for an element which does not yet exist in a satisfactory 
form, but which we hope to launch in the near future - a quadrilateral with in-plane 
nodal rotation (drilling) and a satisfactory capability to represent in-plane flexure 
without numerical integration fixes. 

°In solid elements, the same basic rules apply: low order for sub-modelling, high 
order for supermodelling.   There are some very bad performers about and it is worth 
while delving into element validation tests before making a final choice.   Some useful 
special elements are available such as orthotropic shear elements to represent honey- 
comb core in sandwich structures. 

6.   Load and Inertia Modelling 

In these days of automated aids to mesh generation (which is a purely geometric and 
topological problem), the preparation of loading data, which depend on element formula- 
tion as well as on factors wholly extraneous to the structural analysis, can become the 
dominant task in analysis data preparation.   Two main factors can contribute to this 
problem:- 

"Aerodynamic data are usually derived as load parameters related to a different mesh 
from the structure. 

"Representation of continuous loading is only possible within the limited 
capabilities of the chosen structural elements. 

The grid-to-grid transformation problem can prove quite tricky, especially in 
transonic and supersonic cases where abrupt loading changes are associated with shock 
fronts.   Where point load values are used in both aerodynamics and structural 
representations, a direct, statically exact, transformation is desirable.   Some general 
methods are available but more often the analyst must provide his own. 

If pressure values are used in the structural analysis, these will normally be 
interpolated from the aerodynamic loads, leading to a possibility of small errors in 
static load balance (which may show up as more significant errors at supports or 
constraints).   In any case a detailed load and moment balance check is an essential part 
of any such transformation.   The process is very tedious and time consuming unless it is 
programmed in advance.   We strongly recommend that all teams who regularly carry out 
structural analysis of flying surfaces should equip themselves with automated routines 
tailored to their requirements.   This may appear to be a serious overhead cost,  but the 
alternative is a great deal of repetitive, error prone and costly work for every 
analysis. 

Whilst most structural analyses accept normal-to-surface loads either as pressure 
values or as equivalent nodal loads, depending on the complexity of the elements adopted, 
special attention is needed when distributed loads are applied in-plane at element 
boundaries.   Here we must be careful to introduce kinematically equivalent loads(4) 
if we are to avoid serious distortion of stress patterns near to the boundaries.  This 
again can be tedious and time consuming unless the job is handled via general purpose 
computer routines  - so the same advice applies as before - equip yourself with the 
automation routine rather than repeatedly waste time and effort. 

Inertia modelling is another difficult and time-consuming task if local accuracy is 
needed.   In fine mesh analysis it is often adequate to use simplified distributed mass 
representations and many analysis systems provide a facility for specifying accelerations 
from which quasi-static inertia forces may be calculated.   In coarse mesh analysis and 
most importantly in reduced fine mesh analysis (for dynamic response) it is rarely 
satisfactory to use simple lumping of masses at the coarse mesh nodes.   We need to use 
kinematically equivalent inertia loads in direct coarse-mesh analysis and consistently 
transformed inertia matrices (which will include cross-coupling terms) when using 
reduced stiffnesses.   Facilities provided in standard analysis packages are often 
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inadequate to handle these jobs properly.   In this paper we can do no more than 
recommend the analyst to seek the advice of reputable experts, if the system is 
inadequate. 

7.   Kinematic Boundary Conditions: Constraints and Symmetry 

Many practical structural analysts, brought up on traditional, statics-based theory 
find difficulty in understanding kinematic boundary conditions and constraints.   This 
difficulty  is often compounded by the fact that the finite element systems handle 
commonly arising cases automatically, requiring only formalised data inputs from the 
user.   Elegant treatments of symmetry as sub-cases of a universal concept, as in 
MSC/NASTRAN(13),can further distance the average engineer from real understanding. 
However, in the engineering theory of the previous lecture the concepts are simple, but 
as so often happens, applications of those simple concepts can become complex. 

7.1  Constraints 

Single point constraints, in which we usually equate one or more displacement 
components to zero to represent structural support, cause few problems.  Multipoint 
constraints, which couple degrees of freedom at neighbouring points cause more 
difficulty.   However, these are so commonly used that every analyst should make a 
conscious effort to understand them and acquire facility in describing and manipulating 
them.   Some of the common applications are listed below:- 

applying symmetry conditions 

interface with engineers' theory analysis, e.g. "plane sections remain plane and 
undistorted" 

representing rigid members 

allowance for local offsets 

interpolation between otherwise incompatible meshes 

treatment of partial releases - hinges and slides 

introduction or elimination of special degrees of freedom (e.g. treatment of 
"drilling" rotation in shells) 

Engineers' Theory Interface 

This is a good example of the use of constraints because of its familiarity to every 
mechanical engineer.   In fig. 10 we show an analysis mesh representing the end of a 
cantilever beam whose outer parts are adequately described by simple beam theory.   At 
the interface we may either prescribe a set of forces as derived from standard  beam 
theory or we impose the fundamental kinematic assumption: plane sections remain plane and 
undistorted,  zero lengthwise displacement (pure flexure).    In this simple two- 
dimensional example, this means defining the u-displacements as linearly varying with 
distance from the neutral axis and v- displacements as equal at all points. 

There are always two way of writing down the constraint conditions:- 

a) via a set of constraint equations expressing an imposed relationship between the 
nodal displacements 

b) as a transformation relating the complete set of nodal displacements to a smaller 
number of displacement variables. 

The second method is more general because the reduced variables need not be a subset of 
the nodal variables.   They can be physically appropriate to the job.   In this case, we 
would naturally choose vertical shear V and rotation 9 as our variables.   Mathematically 
the two formulations are equivalent and the constraint equations can always be derived 
from the transformation.   In this case the two forms are as follows:- 

Constraint equations 

f  0 0  - 

1 -1 0 

1 0 -1 

1 0 0 

"1 
0 

"l 

0 "2 

^3 
1 

"4 

p-      1 

^1 
0 

^2 
0 

^3 
1 

^4 

= 0 

Simple beam  y 
theory     _ ^ 

Rigid body 
movement only 

Pig. 10 Engineers' Bending Constraint 
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Transformation 

^1 

^2 

^3 

^4 

^1 

^2 

^3 

L''4j 

yz 

[:] u = 

(8 displacements defined in terms of 2 
remaining degrees of freedom) 

The transformation version is in this case simpler, more physically meaningful and 
directly provides the means of representing the corresponding 'force relationship(4) 

R E {X X4 Y^ ^4> 

This is a special case of a rigid member constraint coupling four nodes.   It allows 
total separation of the two parts of the beam with a consistent interface between them. 
It will most probably produce a stress distribution on the finite element side of the 
interface different from the EBT distribution on the other side, but static equivalence 
in terms of shear force and bending moment is assured. 

Other Direct Constraint Conditions 

Rigid elements, local offsets, local mesh interpolations can all be treated as 
above.   In all cases the two ways of writing the constraints are available: in some 
cases one is the more natural in some cases the other.   In all cases, transformation 
gives more generality and the added bonus of corresponding force definition.   The 
transformation or constraint equations can always be written down by inspection from the 
geometry of the system.   An important point to note is that all such geometric 
relationships must be consistent with nodal geometry to an order of accuracy comparable 
with that used in the finite element progam, otherwise significant errors in static 
equilibrium may arise.   It is therefore recommended that computer routines be written 
(if not provided as standard) to derive all transformation coefficients directly from 
nodal geometry. 

Partial Releases - Hinges and Slides 

One standard treatment is to use duplicate nodes referenced by appropriate elements 
on either side of the release and to couple the constrained freedoms in just the same 
way as described above.   The transformation route allows us to use relative displace- 
ment as one of the defining degrees of freedom rather than relate absolute displacements. 

7.2  Symmetry and Repeated Boundary Conditions 

It is common practice 
symmetry as single segments 
In the extreme case, axial 
around the axis of symmetry 
fundamental region) then, i 
performing N analyses of th 
boundary constraints and N 
structures N = » and we red 
series. 

to analyse structures which  have reflective or cyclic 
subject to appropriate loadings and kinematic constraints, 

symmetry, we analyse a single cross section which is rotated 
If there are N repetitions of the basic segment (or 

n general, we can solve the structural problem completely by 
e fundamental region.   This means N different sets of 
corresponding sets of loading cases.   For axisymmetric 
uce the problem to a finite approximation by using Fourier 

There are, of course, many practical situations where the principal loading cases 
of interest are themselves symmetric in some way: we may then reduce the number of 
separate solutions to the number of symmetric loading conditions. 

Returning to the general case, it is useful to clarify our ideas about the treatment 
of symmetry by reference to a simple example - the singly-symmetric plate of fig. 11. 
A most important point to establish at the outset is that the analysis in terms of a 
repeated fundamental region is basically an application of super-position of loads and 
displacements: the various symmetric components (in this case the symmetric and anti- 
symmetric loads and constraints) apply to exactly the same structure.   Provided that we 
retain the full force and displacement set at the axis of symmetry (including those 
freedoms set to zero in imposing the boundary conditions) the same stiffness matrix 
applies both to symmetric and antisymmetric systems.   However, to relate the stiffness 
of a fundamental region to that of the structure as a whole clearly requires a trans- 
formation of displacements and forces.   This transformation is needed for two purposes:- 

i)   to relate the co-ordinate systems on each side of a symmetry axis to a single 
global system 

ii)   to equate displacement at nodes on the symmetry axis for all repeated 
elements. 
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This transformation is distinct from and must not be confused with the displacement and 
force summation and decomposition relationships which connect symmetric sub-analyses 
with resultant solutions. 

In our example, we analyse the right hand half of the symmetric plate in terms of 
symmetric displacements Uj and antisymmetric V^    (which include the zeros which prescribe 
the boundary conditions).   The resultant displacements {U^ : U^}  on right and left 
halves are given by:- ^^ 

<      ^- 

[::} [: -3 [y 
on the assuiTiption thc.t U^ is defined 
in co-ordinates which are reflected 
about the axis, as shown in fig. 11. 
The inverse relationship gives the 
decomposition of resultant displace- 
ments into symmetric and anti- 
symmetric parts:- 

[::h[:-3[::] 

and for forces:- 

Fig. 11 
Antisymmetric U 

Symmetric Plate 

We re-emphasise that these are decomposition and super-position relations, NOT 
corresponding force and displacement transformations.   [The symmetric and antisymmetric 
force components are h  x the forces corresponding with symmetric and antisymmetric 
reflected pairs of displacements]. 

We associate the same stiffness KQ for a half structure with both solutions, writing 
the stiffness equations as 

K  U. 

R, = K 
A    0 

subject to u  = 0 

subject to V  = 0 

where Ub and vj, are u- and v- displacements at the axis of symmetry, 
partitions of K  are, of course, used in the two solutions. 

Different 

The quite distinct transformation which relates U  and U  to the global displace- 
ments U  combines two functions as described above. ^ 

i)   change the sign of U- displacements to the left of the axis 

ii)   equate U',   = U' _  the boundary displacements in left and right halves. 

If U'represents the displacements in both separate structures referred to global axes 
then 

U' 

ri 10 ' o1 [Up"] 
0  1 I 0 Ufa 
0 1 I 1 0 u 

_0  1 0 I_ 

Whilst, with different partitioning of U' we have 

U " 

U 

(vj 

(V ) 

I 
4 h- 

U' U' 

The resulting transformation T = Tj T2 can be used in the normal way for expressing 
global stiffness in terms of the identical stiffnesses K  of the half structures 

K' 
K J 

The same principles, involving the distinction between solution superposition and 
repeated sub-structure integration apply to all the more complex treatments of symmetry. 

Conclusions 

We have attempted, within the limited scope of a manageable lecture, to give a 
broad  appreciation of practical issues in FE modelling, as seen from the viewpoint of 
an aerospace engineer concerned mostly with linear, quasi-static analysis.   The 
presentation has touched upon many issues outside the realm of mesh generation which is 
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the dominant subject in the extensive literature.   None of these issues is treated here 
in depth, but we have tried throughout to draw attention to those basic principles which 
enable engineers to expand their understanding of a subject as they acquire experience 
in detail applications. 

Most of the underlying ideas in this paper go back to the earliest days of finite 
element method development, when physical understanding was essential in order to use 
the very spartan and specialised tools then available.   We observe today that there are 
many engineers who have slick facility in handling the "mechanics" of finite element 
analysis but lack that basic understanding which they bring to bear in traditional 
structural engineering.   This is a gap which will not be closed by the current trend 
of burying structures in nodes.   We are building up a vast capability for generating 
plausible nonsense faster and more convincingly than ever before. 

We consider that particular attention needs to be given to recognising the 
important and unimportant features of a structure, a number of alternative ways of 
modelling those which are important and treatment of the tricky topics such as kine- 
matic constraints.   It is also considered important that we train engineers to use a 
simple 'language' of matrix structural analysis to provide a means of articulating 
basic concepts with precision but with minimum complexity.   Finally, we see a growing 
role for expert systems to supplement the excellent manipulative facilities of modern 
computer analysis with simple, heuristic know-how.   Combining the new ways with the 
old is a safer way forward than blind progression towards even bigger, more powerful 
black boxes. 
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THE USE OF THE FINITE ELEMENT METHOD 

V. B. Venkayya, Aerospace Engineer 
Flight Dynamics Laboratory 

Air Force Wright Aeronautical Laboratories 
AFWAL/FIBRA, Wright-Patterson AFB OH 15433-6553 

SUMMARY 

These lecture notes are primarily intended to provide a quick overview of the solid mechanics problem 
for engineers using a general purpose finite element system in the solution of aerospace structures 
problems. It gives a brief outline of the solid mechanics problem and some of the available options for 
its solution. The finite element method is explained in more detail with particular emphasis on the use 
of membrane elements in aerospace structural analysis. The intention of these notes is to support a class 
room lecture. 

1.  INTRODUCTION 

In the last thirty years the Finite Element Method (FEM) has developed into a powerful tool for 
solving a variety of engineering problems. These problems, at present, encompass a number of disciplines 
including aerospace, civil and mechanical engineering. The genesis of the FEM can be traced to the 1920's 
and 30's when civil engineers used it extensively for the static analysis of articulated frames in the 
name of slope deflections and moment distribution methods. These methods were well developed for mechan- 
ical calculators which were in vogue at the time. It the 1950's the emergence of the digital computer 
opened new vistas for numerical analysis in general and the finite element method in particular. Since 
then the FEM has grown rapidly from simple static strength analysis to extensive dynamic analysis of one, 
two and three dimensional structures problems. At the same time the scope of the method was extended to 
the solution of a variety of field problems including fluid mechanics, heat transfer, fluid-structure 
interaction, acoustic cavity analysis and a number of interdisciplinary problems. Now the method is no 
longer limited to linear analysis only. It has extensive applications in non-linear mechanics problems as 
well. 

The decades of the 50's and 60's have seen intense research in element development, improvements to 
numerical solutions, and the associated sparse matrix manipulation schemes for the solution of large 
finite element assemblies. This was followed by the development of large scale applications software and 
innovative extensions in solid mechanics as well as other disciplines in the 1970's. In the 1980's there 
are at least 15 to 20 general purpose finite element programs being marketed throughout the world. These 
programs have extensive element libraries to meet the requirements of most complex engineering problems. 
At present the use of the FEM in mechanical design has become as common as the availability of electronic 
computers. 

The extensive data preparation requirements of the FEM have spawned the development of user friendly 
pre and post processors which significantly increase productivity in the design office. They facilitate 
rapid error checking of the input data and interpretation of the output of large finite element models. 
However, availability of good finite element programs is not synonymous with their correct application. 
The pre and post processors do not necessarily assure a true correspondence of the mathematical model and 
the physical system. Proper modeling requires a thorough understanding of the physics of the problem as 
well as some understanding of the details of the theoretical basis of the program being used. Just a 
superficial understanding of the input instructions of a finite element system is inadequate, because it 
can lead to erroneous models which can give unconservative results and premature failures. It must be 
clearly understood that finite element programs are only sophisticated mathematical tools. Their use or 
abuse depends on the user's understanding of the problem and system limitations. 

The finite element model of a physical system generally consists of a description of the geometry, 
material properties, boundary conditions and applied forces. The geometry involves the selection of an 
appropriate grid to represent the continuum, suitable elements to connect the grid, and the properties of 
the elements. The important decision to be made in selecting a grid is the spatial distribution of the 
mesh size. This distribution of the grid depends on the overall objectives of the analysis. If the 
purpose of the analysis is to determine the overall load paths of a large built-up structure, then a 
relatively coarse mesh is adequate and desirable from cost considerations. On the other hand, if the 
objective is to capture details of the steep stress gradients and discontinuities such as cracks and 
cutouts, then a finer mesh is required, at least around the stress raisers.  It is advisable to handle 
these two objectives in separate models rather than in one big model. For example, in dynamic analysis 
where the interest is to determine the overall dynamic behavior as represented by the frequencies and mode 
shapes, a coarse model of a built-up structure is cost effective, while a detailed stress model would 
require a much finer grid. The basic tenet of discrete methods is that a finer mesh gives more accurate 
results. However, a finer mesh requires not only more computational effort but also is difficult to check 
for model errors. It is also worthwhile pointing out that accuracy improves with a finer mesh only when 
the elements capture the behavior of the structure reasonably well. Another observation to be made is 
that, in general, higher order elements require a coarser mesh and vice versa for the same accuracy. 

In finite element modeling selection of appropriate elements is one of the most important decisions. 
Both the accuracy of the analysis and the cost are dependent on the type of elements used in the model. 
The behavior of the structural element can be described by one or more differential equations. These 
differential equations are in turn approximated by the so-called shape functions which are derived from 
basic polynomial functions. The more complex the behavior of the element, the higher is the order of the 
shape functions necessary to represent its behavior. For example, a simple truss element (a rod) trans- 
mits forces by uniform tension or compression. If the possibility of its buckling is excluded, its 
behavior can be represented by a first order differential equation or a linear polynomial function. The 
behavior of a three-dimensional beam, on the other hand, is more complex in the sense that the bending 
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(about two axes), axial tension or compression, torsion and shear have to be represented by different 
differential equations. For example, bending and torsion representations require fourth order differen- 
tial equations. Under certain symmetry conditions they can be uncoupled, otherwise they are usually 
coupled. To represent this behavior shape functions must be at least of the order of cubic polynomials. 
Similarly the lowest order polynomial representation of membrane plate behavior is linear, while higher 
order representations can only capture the stress gradients within the element itself. The bending 
behavior of plates is governed by a fourth order partial differential equation, and the corresponding 
polynomial approximations must be at least of the quintio order. 

In making an analysis of large structural components such as a wing, fuselage etc., modeling with 
simple (low order) elements is most desirable. These simple models can provide reasonably accurate 
information about the overall load paths, and the simplicity of the elements allows easier interpretation 
of the results. They are also ideal for parametric studies in preliminary design and optimization. The 
use of higher order elements is appropriate while making a detailed analysis of local areas, such as a 
plate with a cutout or a crack or local buckling of a panel etc. In general, the higher order elements 
are less forgiving when there are violations of the basic assumptions from which they were derived. For 
example, lumping of masses or forces at grid points based on inspection or intuition is not acceptable in 
finite element models involving higher order elements. Consistent formulation is almost mandatory in such 
cases. Because of these limitations dynamic analysis of large built-up structures with significant non- 
structural mass attachments becomes quite cumbersome with higher order elements. 

Modeling material properties of isotropio and/or anisotropic materials in the linear elastic range is 
relatively simple and presents no difficulties. When the materials behave nonlinearly or beyond the 
elastic range, modeling becomes more difficult because of the nonuniqueness of solutions associated with 
the loading and unloading sequences. Modeling of the boundary conditions is another very important issue 
in establishing the correspondence between the physical system and the mathematical model. The degree of 
supports (partial or full fixity) and the internal and external dependence of the motions of various 
degrees of freedom (single point or multipoint constraints) are some of the important considerations in 
developing boundary conditions of a finite element model. Correct representation of the boundary 
conditions is crucial for obtaining good results from an analysis. 

The external or the internal environment of the system is described by the applied forces on the 
finite element model. These forces can be due to aerodynamic, thermal, gravity (body forces), centrifugal 
forces, etc. depending on the environment in which the system operates. Any errors in the force represen- 
tation will be directly transmitted to the results of the analysis. Both lumped and consistent formula- 
tions can be used with reasonable accuracy in the case of linear elements. For higher order elements only 
consistent formulations are recommended.  Similar rules apply for the mass representation in finite 
element models. 

As pointed out earlier, the effective use of a general purpose finite element system requires a rea- 
sonable understanding of the formulation and the limitations of the system and an indepth understanding of 
the physical system and its behavior under the action of external forces. The next few sections provide a 
cursory background to solid mechanics problems in general and the finite element method in particular. 
Hopefully this background provides some guidelines for accurate modeling of practical structures. 

2. SOLID MECHANICS PROBLEM 

An aircraft structure is a deformable body, and the understanding of its behavior under the action of 
external and/or internal forces is essential for a successful design to meet the performance requirements. 
A typical aircraft operates in a severe dynamic environment. This dynamic environment is generally 
approximated by a set of equivalent static, dynamic, thermal and body forces for design purposes. These 
forces are assumed to be deterministic or treated as truly random in nature. The essential point is that 
we have the means to determine the loading conditions on a structure, so that its deformable behavior can 
be predicted and an adequate structure can be designed. The finite element method is most often used for 
predicting the behavior of structures subjected to loads. Even though the finite element method can be 
applied to the solution of a variety of engineering problems, its original development was in response to 
the solution of solid mechanics problems. A brief description of the extent and the scope of solid 
mechanics problems is appropriate before presenting the finite element method. 

The deformable body shown in Fig. la is subjected to a set of continuous or discrete forces and 
boundary conditions. The body is assumed to be supported adequately to prevent any rigid body motion, so 
that its deformable behavior can be studied independently. For linear problems the rigid and deformable 
behavior can be determined independently, and the combined effect can be obtained by superposition. 

CONTINUOUS DISCRETE 

1 T 
STATIC.   DYNAMIC 
THERMAL,   BODY FORCES 

FIG. la.  Deformable Body FIG. lb. A cut through the Deformable Body 

The state of the body after deformation can be defined by the displacement vector W, which represents the 
motion of a point from its initial position A to its new position A'. This displacement vector, W, can be 
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defined by the three unknown displacement components u, v, and w respectively in the direction of the 
three orthogonal axes [1]. 

u(x, y, z, t)" 

v(x, y, z, t) 

w(x, y, z, t) 
(1) 

The three displacement components are functions of the spatial coordinates (x, y, z) of the point in the 
body. For dynamic problems they are also dependent on time. Knowledge of the displacements alone is not 
enough to determine whether the body can withstand the applied forces. For design we need to know the 
state of strains and stresses in the body.  Fig. lb shows a cut through the body to examine the state of 
the internal forces in the body. Fig, 1c shows the free-body diagram with internal stress resultants as 
force and moment vectors. Fig. Id shows the normal and shear stress components on an infinitesimal 
element. 
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FIG. Ic.  Free Body Diagram 

FIG. Id.  Stress Components on an Infinitesimal Element 

The corresponding normal and shear strain components are implied. The six components of strain and 
the corresponding stresses are represented by 

~ '■XX yy zz xy yz zx (2) 

1 '•XX yy zz xy yz zx (3) 

The solution of the solid mechanics problem implies a knowledge of these 15 unknowns as continuous func- 
tions of space and time. The list of 15 equations necessary to solve for the 15 unknowns is as follows: 

Equilibrium equations (3) 
Strain-displacement relations (6) 
Stress-strain relations (6) 
Number of equations (15) 

The equilibrium equations derived from Newton's Laws can be written as follows: 

^<5.f.x. a. 2-dxY -L Advi 4. V - r\ 

<^x 

(«) 

-^ + ^-7=0 
The equilibrium equations are written here in terms of the stress gradients and the body forces X, Y, Z on 
an infinitesimal element. When they are written in terms of stress resultants on a body with finite 
dimensions, the three equations translate into three force and three moment equations as follows: 

I F, = 0   I F  = 0   I F  = 0 
i ^i      i ^i      i  i 

VM  =0   TM  =0   JM  =0 
.X      . y      j z 11     1 ^i     1  i 

(5) 
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The six strain-displacement relations can be written as 

2 

(6) 

The above strain-displacement relations contain both linear and non-linear terms. The linear 
strain-displacement relations can be written as 

c  - ALL (7) 

t.=^ 
The same relations can be written symbolically in terms of a differential operator 

e = D W 

where g and W are the strain and displacement vectors and D is the differential operator 

tf = 

M   0    0-^0^' 

(8) 

The six stress-strain relations are given by the generalized Hookes Law 

a = E e (9) 

where g and e are the stress and strain vectors and E is the elastic constants matrix which represents the 
properties of the material. In an expanded form Eq. 9 can be written as 

(10) 

The elastic constants matrix is symmetric about the diagonal. A general three-dimensional anisotropic 
body can, theoretically, have 21 independent elastic constants. Additional symmetry uncoupling reduces 
these to 9 elastic constants. An isotropic material has two elastic constants, the modulus of elasticity 
and Poisson's ratio or the two Lame's constants. A typical plane stress orthotropic material is 
characterized by four elastic constants. These are the moduli of elasticity in the longitudinal and 
transverse direction, the shear modulus and Poisson's ratio. Most fiber-reinforced composites are 
considered as plane-stress orthotropic materials. 

■<^x/ '-"     ^12     ^13     ^1*    '-'S    ^l& "€.J 
<^YY Eat ^it   .    .    .      Eji £ry 

— ^33 £zz 
E44 ^xr 

SYMMtTR\C         E55   . £rz 
E:,,_ e^x 
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The fifteen coupled differential equations presented in the foregoing discussion define the solid 
mechanics problem. However, additional relations must be considered to satisfy special requirements. For 
example, the six strain components are expressed as functions of only three independent displacements and 
as such there exists a dependency between the strains. This dependency is represented by the following 
compatibility conditions. 

ri £xT — ^, €r,Y + A€xi. 

,2 (11) 

Physically these compatibility conditions can be interpreted as assuring continuity in the deformation of 
the body (without breaks). 

The solid mechanics problem must also satisfy the boundary conditions as given by 

(12) 

where X, Y, Z are the body force components in the x, y and z directions respectively, and I,  m, n are the 
direction cosines of the surface normal at the boundary. 

The strain, stress and material property (elastic constants) transformations between the desired 
coordinate systems are the additional equations required in the solution of solid mechanics problems. 

The strain transformation equation in three dimensions is given as 

e' = T e 
~e - (13) 

where e and g' are the strains defined with respect to the x, y, z and x', y', z' axes respectively as 
shown in Fig. 2. 

X    Y    z : - 

Z(ur') 

Z(tLr) 

FIG. 2.  Relationship Between the x, y, z Coordinate System and the x', y', z' Coordinate System 

The strain transformation matrix is given by 

T = 

r ^' 
_ 2l3 _    < i's'^s              rn3r\3            rijia 

aU. 
a Us 

L2l3i. 

(14) 
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If the strain transformation matrix is partitioned into 3x3 matrices, It can be written as 

T  T 
AAI AB 

T IT 
. BA| BB_ 

The submatrioes T^^ T^g can be identified from Eq. (14). 

The stress transformation equations can be written as 

a' = T a 
~a  - 

where the stress transformation matrix T is given in partitioned form as 

T    2T 
:AA I  AB 

(15) 

IT 'T 
2 BAI BB 

(16) 

(17) 

The elastic constants transformation matrix can be derived from the strain energy invarianoe condition as 
follows: 

T I E T I 

where the strain transformation matrix T^ is given by 

The strain and stress transformation matrices for plane stress problems are given by 

T , = T   =  1^ 
-E   ~e   -a 

1 = cos'e    S\N'0    ism^e 
sm'e   cos'0 -isiKiae 

.-smae   siNee     cosse 

(18) 

(19) 

(20) 

T - COS G     sm' 
cos^e 

SIN26 
siNae 
C0S26 

(21) 

The fifteen coupled partial differential equations in fifteen unknowns can theoretically provide a 
means for the complete solution of three dimensional solid mechanics problems. The solutions must also 
satisfy the compatibility and tioundary conditions. Among the fifteen unknowns the three displacement 
components are really the independent variables, and the remaining 12 unknowns can be expressed as func- 
tions of these three independent variables. Then we need to solve the three coupled partial differential 
equations which are given as 

V   n   + j Ae. 
1-zy  dX ^=0 

vV + ,4^^+J = o (22) 

2 
where y is the three dimensional Laplaolan operator 

z 0 

and e is the volume dilatation given by 

2    2    2 
3x   3y   3z 

e = e  + e  + e XX   yy   z z 

(23) 

(24) 

The solution of a general three dimensional solid mechanics problem by way of solving coupled partial 
differential equations, whether they are 15 or 3, Is still an insurmountable task. We must find ways of 
simplifying the problem, even if it means limiting the scope of the problem. In the next section an out- 
line is presented of some of the simplifications and methods available. 

3.  SOLUTION OF SOLID MECHANICS PROBLEM 

As discussed in the previous section the general three dimensional solid mechanics problem consists 
of 15 unknowns and coupled partial differential equations for their solution. These solutions must also 
satisfy the strain compatibility and boundary conditions. In addition, the formulation and interpretation 
of the problem Involves strain, stress, material properties and other transformations. In view of this 
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complexity it is not realistic or possible to obtain a closed form solution for a general three- 
dimensional solid mechanics problem. A more realistic goal is to specialize these equations to specific 
problems whose behavior we can intuitively predict. Such specialization results in 

» One dimensional problems 

• Plane stress problems 

• Plane strain problems 

• Axisymmetric problems 

» Bending and shear problems 

• Inplane, bending, and shear problems 

» Three-dimensional elasticity problems 

An example of a one dimensional problem is a simple tension (compression) rod. Its behavior can be pre- 
dicted by one first order differential equation. If this one dimensional element is subjected to bending 
(in one plane) in addition to the axial force, then its behavior can be predicted by two uncoupled differ- 
ential equations, assuming that the axial force is small enough to neglect the coupling effects.  A first 
order ordinary d[ifferential equation (ODE) predicts the axial deformation and a fourth order differential 
equation predicts the bending behavior. Similarly, if this line element is subjected to bending in a 
second plane and twisting about its own axis, then two more differential equations are necessary to 
predict their behavior. These four differential equations are coupled or uncoupled depending on whether 
the internal force coupling exists. 

The plane stress and plane strain problems are two dimensional problems. Their behavior can be 
predicted by two first order partial differential equations. Similarly, axisymmetric problems can be 
described by a single ODE. The essential point of this discussion is that by limiting the scope of the 
problem based on the projected behavior, we can significantly reduce the complexity. However, this 
continuum approach based on the solution of differential equations imposes severe restrictions because of 
the continuity requirements and the need for satisfaction of the compatibility and boundary conditions. 
Because of these restrictions, the continuum (or the differential equations) approach is limited to simple 
components and loading conditions as shown in Fig. 3. 

/   /   /, 

FIG. 3.  Simple Components with Loading Conditions 

A typical aircraft structure is built out of many structural components.  It is inherently discon- 
tinuous and differential equation representation of the details is at best infeasible. For example, an 
aircraft wing shown in Fig. 4 consists of spars, spar caps, ribs, rib caps, skins and stiffeners. Spars, 
ribs and skins between the joints can be represented by plane stress or bending plate elements. Simi- 
larly, spar caps, rib caps and stiffeners between the joints can be represented by rods or beams. The 
behavior of each of these structural components is governed by different differential equations, and their 
behavior at the joints and across the joints is uncertain and cannot be adequately described by differen- 
tial equations. 

FIG. 4.  Aircraft Wing 

For such structures discrete approaches are more appropriate. The purpose of the discrete approach is to 
replace the governing differential equations by a set of algebraic equations whose solution can be adapted 
to a digital computer much more naturally. The basic principle behind the discretization is to obtain the 
solution of the problem at discrete points, instead of as continuous functions of the spatial coordinates. 
Then the solution between the discrete points can be obtained by interpolation or extrapolation. The 
first step in discretization is to transfer the effect of the continuum to preselected discrete points on 
the structure by the use of interpolation functions. This procedure is akin to the popular notion of 
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lumping (low-level interpolation). Now the unknowns are the behavioral quantities (displacements) at the 
discrete points, and the relations are expressed in terms of algebraic equations. The second step is to 
solve for these unknowns at the discrete points. The third step is to obtain the solution between the 
points by the same interpolation as the first step. 

Solid mechanics problems are generally classified into: 

• Boundary value problems 

» Initial value problems 

• Mixed problems 

A structure is a solid body of finite dimensions. The behavior of the body is prescribed at least par- 
tially at the boundary. The boundary conditions can be either kinematic (displacements, velocities, etc.) 
or in terms of forces. The name boundary value problem derives from this finiteness in spatial coordi- 
nates. Initial value problems refer, primarily, to the variable time. As in vibrations and heat conduc- 
tion problems the initial state is prescribed but not necessarily at other times. For such problems if 
the state is prescribed at two different times, they will be called two point boundary value problems as 
distinct from the boundary value problems. A combination of initial and boundary value problems are 
called mixed problems. The vibration of beams, plates, etc. are some examples of mixed problems. The 
boundary refers to space, and initial refers to time in such problems. 

There are a number of discrete methods for the solution of boundary value problems. Some of the 
prominent ones are: 

• Finite differences 

• Rayleigh-Ritz procedure 

• Galerkin's Method 

• Finite Element Methods 

• Stiffness Method 

• Flexibility Method 

We will briefly outline the first three methods. The finite element method will be discussed in much more 
detail. 

Initial value problems are generally solved by 

• Collocation 

» Subdivision 

• Numerical integration 

• Runge-Kutta Methods 

Mixed problems are solved by 

• Separation of the boundary and initial value problems. 

• Combining both methods. 

FINITE DIFFERENCE METHOD 

The finite difference method can be summarized by the following six steps: 

• Formulate the governing differential equations 

• Approximate the structure by a discrete grid 

• Apply the finite difference operator at each grid point 

• Reduce the differential equation(s) to algebraic equations of the form 

K u = F 

• Solve the algebraic equations for the unknowns u 

• Determine internal displacements, strains and stresses 

Formulation of the governing differential equations in the first step can be accomplished either by equi- 
librium considerations or by a variational approach. Approximation of the continuum by a discrete grid 
involves selecting points in the structure where the behavioral variables like displacements, etc. can be 
determined by interpolation. For a given degree of interpolation the coarseness or fineness of the grid 
depends on the expected gradients of the behavior variables. High gradient regions need a finer grid and 
vice versa. The function of the difference operator is to replace the differential quantities by the 
unknown behavioral quantities at discrete points. An example of a central difference operator is given in 
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Fig. 5. The resulting set of algebraic equations contain a known coefficient matrix K, the unknown 
behavior variable (displacements) vector u and a known vector F (applied forces). The K matrix is a 
function of the geometry, elements, and material properties of the structure. If the vector u represents 
displacements, then the strains can be obtained by the strain-displacement relations which were given in 
the previous section. From the strains we can obtain the stresses using the stress-strain relations. 

«w Wc-i W. K, ^.^ 
3U       _       1        r 
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^ = T*[G>- -Q- -®- -0-- -<i)  ] 

FIG. 5.  Central Difference Operator 

RAYLEIGH-RITZ METHOD 

As in the case of the finite difference method the Rayleigh-Ritz method can be summarized by the 
following steps: 

• Formulate the total potential (strain energy and external work) 

• Approximate the unknowns by a series 

n 
u(x, y, z) = I    a (t> (x, y, z) 

i=I 

4). (x, y, z) ^Coordinate functions - must satisfy the kinematic B.C. 

a.        ^ Unknown coefficients of the coordinate functions 

• Minimization of the total potential w.r.t. the a gives a set of algebraic equations 

K a = F 

• Solve for the a and obtain the displacements from the second step. 

» Determine the strains and stresses. 

The Rayleigh-Ritz method gives a lower bound solution in the case of displacements and an upper bound 
solution in the case of frequencies etc. In other words the Rayleigh-Ritz approximation normally 
overestimates the stiffness of the structure. 

GALERKIN'S METHOD 

An outline of the Galerkin's method is as follows: 

• Formulate the governing differential equations 

• Approximate the solution either by a series or a polynomial 

u(x,y,z) = I  a^(tij^(x,y,z) 

• Substitute the solution into the differential equations and obtain the error term e 

• Make the weighted integral of the error over the region zero 

/"fij^edxdydz = 0 

• Solve the resulting set of algebraic equations 

Ka = F 

• Determine the strains and displacements 

Galerkin's method is similar to the method of residuals frequently discussed in connection with the 
application of the finite element method to other engineering problems. The three methods discussed so 
far have some similarities and some differences. The last two methods give a symmetric system of equa- 
tions. These methods are explained in the context of static analysis. However, their extension to 
dynamic analysis involves energies associated with the inertia and dissipation terms. 

The last method we identified for the solution of boundary value problems is the finite element 
method. This method is also of primary interest to this lecture series. Before discussing this method in 
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detail, we will introduce the familiar concepts of stiffness and flexibility and their implication in 
discrete structural analysis. In addition to providing an overview of the finite element method, the 
stiffness and flexibility discussion points out some similarities to the other three methods. 

STIFFNESS AND FLEXIBILITY 

We will introduce the concept of stiffness with the help of a simple linear spring (See Fig. 6) 
subjected to a force P at the end A which resulted in a displacement u at the same end. Since it is a 
linear spring, the displacement u will be linearly proportional to the applied load P, and this relation 
can be expressed by 

P = K u 
(25) 

where K is the proportionality constant which represents the stiffness of the spring. 

K 

A ^/SAAAW^ ^ P 

FIG. 6.  Simple Linear Spring 

From Eq. (25) the stiffness of the spring can be written as 

P K = — = force per unit displacement 
u 

So the stiffness of a structural element may be defined as the force necessary to produce a unit 
displacement. For example, if this spring is a simple tension/compression rod, the applied force P 
produces a uniform stress a in the rod 

a=f (26) 

The strain In the rod is given by 

e = F = ^ (27) 

and the elongation u is given by 

E  AE 

" = ^^ = X^ (28) 

P = f^ u (29) 

The axial stiffness of the rod is given by 

„ _ AE 
*^ - IT (30) 

The flexibility of the spring, F, can be defined by 

u = F P (31) 

and is given by 

F = — = disnlacement due to a unit force 
P     ' (32) 

Then the flexibility and the stiffness of the spring are related by 

F = K"^ (33) 

i.e. flexibility = the inverse of the stiffness and vice versa. 
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Now we will extend this concept of stiffness and flexibility to a built-up system consisting of many 
springs, displacements and force components. We will call this system a multi-degree of freedom system. 
The number of degrees of freedom of a system is defined by the number of independent coordinates necessary 
to fully identify its position in configuration space. For example, a particle in space can have a 
maximum of three degrees of freedom. These three degrees of freedom correspond to motion in the direction 
of the three orthogonal axes. However, the number of degrees of freedom of the particle can be less if 
its motion is restricted. For example, a particle restricted to plane motion will have only two degrees 
of freedom. Similarly, if it is limited to moving along a line, then it has only one degree of freedom. 
A rigid body in space can have a maximum of six degrees of freedom, three translational degrees of freedom 
corresponding to motion of the center of mass along the three orthogonal axes and three rotational degrees 
of freedom corresponding to rotations about the same axes. With the knowledge of these coordinates it is 
possible to completely define the position of the rigid body in space. As stated before, if any restric- 
tions are imposed on the motion of the rigid body, then the number of degrees of freedom will be less than 
six. A deformable body in space will have an infinite number of degrees of freedom, since every point in 
the body can deform independently of the others, and there are an infinite number of points in the body 
when treated as a continuum. When this body is discretized by a finite number of points, then the degrees 
of freedom of the body will also be finite.  Each of these discretized points can have up to a maximum of 
six degrees of freedom.  So far the degrees of freedom of the system were defined with reference to the 
configuration space. Time dependence of the motion is not considered significant. However, if the motion 
is time dependent, then the state of the system cannot be defined by displacements alone. We must add to 
this degree of freedom definition velocities as well. Such a space is called a state space, and the 
number of degrees of freedom in the state space is twice that of the configuration space. The discussion 
in this lecture series is limited to the configuration space. 

In Fig. 7a the point A is connected to three springs which in turn are fixed to supports at the other 
ends. Assuming that the point A has no finite dimensions, then it has two degrees of freedom if its 
motion is limited to the plane of the paper. The two degrees of freedom are identified by 1 and 2. u. 
and Up are the displacements, and P, and P. are the force components in the two directions respectively. 
The force-displacement relations for this two degree of freedom system can be written as 

P = K u (3t) 

where P, K and u are matrices and are identified by a wiggle under. The full matrix equation is written 
as 

■^11 ^12 

^^21 ^22 

(35) 

Now the first column of the stiffness matrix is defined as the force system necessary to maintain a 
displacement configuration in which u,=1 and Up=0. Fig. 7b shows the displacement configuration 
corresponding to the first column. 

FIG. 7a.  Two Degree of Freedom System 

^  I  '   \l I—WWA 

U2 
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FIG. 7b.  Displacement Configuration u =1, u.=0 FIG. 7c.  Displacement Configuration u.=0, Up=l 

Similarly the second column of the stiffness matrix is defined as the force system necessary to maintain 
the 
by 
the displacement configuration in which u =0 and u =1. See Fig. 7c. The actual stiffness matrix is given 

r^(3) ^ K^^^Cos^e  K^^^CoseSine 

K^^^CosGSine K(l>+K(2)sin2e 
(36) 

So it is possible to construct the stiffness of a multi-degree of freedom system column by column by 
giving a unit displacement in the direction of each degree of freedom while all other degrees of freedom 
are fixed. 
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The flexibility of the same two degree of freedom system can be defined as 

u = F P 

F   F 
11   12 

F   F 
. 21 ^^22 

(37) 

The first column of the flexibility matrix can be defined as the displacements resulting from the 
application of a force system in which P =1 and P =0. Similarly the second column represents the 
displacements resulting from P =0 and P„=1. 

In summary the stiffness and flexibility can be defined as: 

• The jth column of the stiffness matrix is a force system necessary to mlntain a displacement 
configuration in which u.=1 while all other u are zero. 

* The Jth column of the flexibility matrix is a displacement configuration resulting from a force 
system P.=1 while all other forces are zero. 

The element K^ is the force in the 1th direction due to a unit displacement in the Jth direction while 
all other displacements are zero. 

The element F 
all other fore' 

^.  is the displacement in the ith direction due to a unit force in the Jth direction while 
oes are zero. 

For a given structure with the same degrees of freedom the relationship between the flexibility and the 
stiffness Is given by 

(38) 

provided K is a non-singular matrix. 

Fig. 8 gives the stiffness and the flexibility definitions for a three degree of freedom cantilever beam 

(2)     (D      ® 

FIG. 8. 

'33 
STIFFNESS FLEXIBILITY 

Stiffness and Flexibility Definitions for a Three Degree of Freedom Cantilever Beam 

In the stiffness method the displacements are the unknowns and the forces are the known quantities. By 
constructing the stiffness matrix using the properties of the structure, we can determine the unknown 
displacements. The reverse is true in the case of the flexibility method. The method outlined here for 
determining either the stiffness or the flexibility matrix is cumbersome to say the least when the number 
of degrees of freedom of the structure is large and the elements of the structure are more complex. In 
the next section a formal derivation of the displacement method of finite element analysis is presented. 
The displacement method is most amenable for implementation on a digital computer. The method is 
discussed in the context of plane stress (membrane) elements. Membrane elements are most suitable for 
determining the overall load paths of large built-up structures. 

4.   FINITE ELEMENT ANALYSIS 

In the finite element analysis the continuum is replaced by a discrete model consisting of a finite 
number of nodes connected by elements (members) [2-5]. The rationale in such an approximation is that the 
response between the nodes (i.e., in the elements) can be expressed as a function of the response at the 
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nodes. The functional relationship between the two responses is approximated by various interpolation 
functions or shape functions. The type of functions depends on the complexity of the problem at hand. 
This discretization reduces the original differential equations of the continuum to a set of algebraic 
equations which can be solved much more readily on digital computers. 

The equations of the finite element analysis can be derived conveniently by considering the strain 
energy of the deformed system. For example, if the elastic body is idealized by m finite elements 
connecting q nodes (See Fig. 9), then the strain energy of the ith element can be written as 

dV (39) 

where 2. and ^. are the stress and strain vectors and V is the volume of the element. 
elastic body the relation between stress and strain can be written as 

For a linearly 

Ei  Sl- ew) 

Elements 

Nodes*^, 

(a) Continuum (b) Finite Element Model 

Fig. 9. Continuum and Finite Element Model 

where E. is a symmetric matrix of material elastic constants. For typical plane stress problems the 
elastic constants matrix is of dimension 3x3. For an isotropic material in plane stress problems the 
elements of E are as follows: 

w 
1 V 0 

V 1 0 

0 0 1(1-v)_ 

(41) 

where E and y are the elastic modulus and Poisson's ratio of the material respectively, 
orthotropic material the elastic constants matrix is given by 

For an 

E = 
1-Sy' 

ye 

I (1-By2) 

where E, and £„ are the longitudinal and transverse moduli, respectively, in the 
material property axes. S is the ratio of transverse to longitudinal modulus (E, 
shear modulus and Poisson's ratio respectively. 

(42) 

directions of the 
p/E.) and G and p are the 

The essence of the finite element approximation is that the internal displacements of the elements 
are expressed as functions of the displacements of the discrete nodes to which they are connected. As an 
example the local coordinate system and the nodal degrees of freedom of the triangular membrane element 
are shown in Fig. 10. 
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(a) Bar Element 

«A '1 

(b) Triantjular Heoibrjr.e Element 

HA '1 

(c) Quidrlliteral or Shear Pinel 

FIG. 10.  Elements and Local Coordinate System 

The functional relationship between the element's internal displacements and the discrete nodal displace- 
ments is given by 

«i = *i h 
(t3) 

where the matrix w^^ represents the displacements in the element which are functions of the spatial coordi- 
nates (x, y) for membrane elements. The shape function * is a rectangular matrix, and its elements are 
also functions of the spatial coordinates. The vector v~ represents the nodal displacements in the direc- 
tion of the element degrees of freedom in the local coordinate system (Fig. 10). Now the strain- 
displacement relations can be written as 

Si = P Yi W) 

where D is a differential operator. For a plane stress problem D is given by 

rs 

(45) 

3x 

3y 

3y   3xJ 

Substitution of Equations 40, 43 and 44 in 39 gives the expression for strain energy in the following form 

(46) ^1 ~ 2 ^i h ^i 

where k is the element (member) stiffness matrix with respect tb  the discrete coordinates v and is given 
by   ~^ - " 

k. =  / i))' D*^ E. D A dV (47) 

1 X k_ 
pq 2\'^'  ej^) dV (48) 
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where 2j}^    is the stress state due to the element displacement configuration in which v =1 while all other 
v's are zero. Similarly ^j^    is the strain state due to the unit displacement configurition in the direc- 
tion of the qth degree of freedom. These two conditions are shown in Fig. 11 for the degrees of freedom 1 
and 2 of the membrane triangle. It should be noted that besides assuming appropriate shape functions, the 
integration in Eqs. (47) or (48) is one of the difficult tasks in the case of complex elements in finite 
element analysis. However, for membrane elements this integration does not present any difficulties as 
will be seen in the next section. For more complex elements the usual practice is to adopt numerical 
integration schemes [5,?]. 

(a) First umt Mode (b) Second Unit Mode 

FIG. 11.  Examples of Unit Displacement Modes 

From Eq. (46) and Castigliano's first theorem, the relation between the element nodal forces and the 
displacements may be written as 

3T. 

3V = ^i^i (49) 

where §. is the element nodal force matrix corresponding to the displacement matrix v.. Similar force- 
displacement relations for the total structure can be derived from the strain energy of the structure. 
The total strain energy r of the structure can be written as the sum of the energies of the individual 
components. 

m 
I 

1=1 "i 

m 

I 
1=1 Yi bi Yi (50) 

In general, for most structures, it is convenient to define a local coordinate system for each ele- 
ment and a global coordinate system for the total structure. In such a case the element and structure 
generalized coordinates can be related by 

Yi li y (51) 

where a. is the compatibility matrix. Its elements can be determined by kinematic reasoning alone pro- 
vided the structure is kinematically determinate. The matrix y is the generalized displacement vector of 
the structure in the global coordinate system. It is interesting to note that Eq. (51) not only trans- 
forms element displacements from local to global coordinates but also gives information about how the 
elements are connected to the structure. From Eq. (51) and the principle of virtual work it is easy to 
show that the transformation between the forces on the structure and the element internal forces is given 
by 

eh, (52) 

where g is the force vector on the structure in the global coordinate system. The transformation given in 
Eq. (52) is sometimes referred to as a oontragradient transformation. 

Substitution of Eq. (51) in (50) gives the expression for the total strain energy in the form 

1  t „ 
2 ~ ~ y (53) 

where K, the total stiffness matrix of the structure, is written as the sum of the component stiffness 
matrices. 

t 

(54) 

Again using Castigliano's first theorem the relation between the generalized force matrix P corresponding 
to the displacement matrix u may be written as •.   ~ 

3r 
3Uj K u (55) 
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In most structural analysis problems the stiffness matrix K is sparsely populated. It is essential 
to take advantage of this fact in solving the load deflection equations (Eq. 55), particularly in the case 
of problems with a large number of degrees of freedom where the cost of computation can be prohibitive 
otherwise. Gaussian elimination, with modifications to take into account the symmetry and sparseness of 
the stiffness matrix, is one of the effective methods for the solution of the load deflection equations. 

Basically Gaussian elimination involves decomposition of the stiffness matrix by 

K = L p L* (56) 

where L is the unit lower triangular matrix and D is a diagonal matrix. The advantage of this decomposi- 
tion scheme is that the L matrix retains some of the sparseness characteristics of K which consequently 
reduces the number of computations. Also L and D can be assigned the same storage as K. 

The next step is the foward substitution by 

L Y = P ^57) 

where the matrix Y is given by 

V = D L* y (58) 

In Eq. (57) the solution of Y can be accomplished by simple forward substitution.  Once Y is obtained, u 
can be solved by back substitution using Eq. (58). The last two steps together are generally referred to 
as Forward-Back Substitution (FBS).  Solution of Eq. (55) for multiple load vectors involves the decompo- 
sition of the stiffness matrix once and repetition of FBS as many times as there are load vectors. 

With the help of these basic equations the steps in the finite element analysis can be outlined as 
follows: 

1. Input information consists of 

a. Geometry of the structure 

Node Coordinates 
Element Connections 
Section Properties 

b. Material properties 

c. Boundary conditions 

d. Loading 

e. Clues for appropriate (desired) output. 

2. Element information consists of 

a. Determination of the local coordinate system for each element. 

b. Selection of the appropriate shape functions (Eq. (43)), 

c. Determination of the element stiffness matrix (Eqs. (47) or (48)). 

3. Transformation of the element stiffness matrix to the global coordinate system (Eq. (54) without 
summation). 

4. Determination of the structure stiffness matrix by summation of the component stiffnesses 
(Summation in Eq. (54)). 

5. Incorporation of the boundary conditions. 

6. Solution of the load-deflection equations (Eqs. (55), (56), (57), and (58)). 

7. Determination of the element displacements in their local coordinate system (Eq. (51)). 

8. Determination of the stresses in each element (Eqs. (44), (43), and (40)). 

9. Output the structure displacments, element stresses and other information such as element strain 
energies, etc. 

The next section consists of the details of the stiffness matrix formulations for the four membrane 
elements and their application. 
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MEMBRANE ELEMENTa     .     ' ,, , ^t.   ■ 

The discussion in this section is limited basically to four finite elements: 

1. Bar (Axial Force Member) 

2. Membrane Triangle 

3. Membrane Quadrilateral 

4. Shear Panel 

The four elements and their local coordinate systems are shown 
line element and is equivalent to a rod element in the NASTRAN 
constant strain plate element similar to TRMEM in NASTRAN. The 
of four (non-overlapping) constant strain membrane triangles (e 
This interior node is later removed by static condensation. Th 
The shear panel is also constructed out of four non-overlapping 
However, only the shear energy is considered in determining the 
formulation is somewhat different, this element gives oomparabl 
the so-called Garvey shear panel [9]. 

in Fig. 10. The bar is a constant strain 
[8] program. The membrane triangle is a 
membrane quadrilateral is constructed out 
lement 2) with a fictitious interior node. 
is element is similar to QDMEM2 in NASTRAN. 
triangles with a fictitious interior node. 
stiffness of this element. Although the 

e results to the NASTRAN SHEAR element or 

The basis for the derivation of the shear panel is empirical, and it is primarily intended to elmi- 
nate some of the difficulties encountered in using membrane triangles and quadrilaterals. For example, in 
beam problems (rectangular beams, I-beam, Box Beams including multicell wings and fuselage structures) the 
high stress gradients in the webs do not Justify the use of constant strain triangles or quadrilaterals 
derived from these triangles.  In fact, use of such elements for the webs (spars and ribs in wings) over- 
estimates the stiffness significantly. Aerospace engineers have offset this difficulty to a large extent 
by judicious use of membrane elements in conjunction with the shear panels. In fact the early finite 
element models of wings and fuselages consisted primarily of bars and shear panels. However, the present 
practice of using membrane triangles and quadrilaterals for the top and bottom skins, bars for the posts, 
spar and rib caps, and shear panels for the spars and ribs eliminates to a large extent the need for 
determining the equivalent thicknesses and cross-sectional areas in the bar and shear panel model. The 
models consisting of these elements are most satisfactory for determining the primary load paths in built- 
up structures such as wings and fuselages. In addition the simplicity of these elements makes interpreta- 
tion of the results easy and also keeps the analysis costs low because the stiffness matrices of these 
elements can be generated in a fraction of a second. Most of the remaining discussion of the membrane 
elements is extracted from References [10] and [11] which describe in detail programs ANALYZE and OPTSTAT. 

BAR (ROD) ELEMENT 

Basically this element is an axial force member. Its primary use is in two and three dimensional 
truss structures.  It is also used extensively as spar and rib caps, posts around shear panels, stiffners 
and other line elements in aircraft structures. The local coordinate system of this element is shown in 
Fig. 10. The positive x-axis is directed along the line joining the two ends, v and v- represent the 
element end displacements. The corresponding two end forces are s, and s_. The displacement field in the 
element is assumed to be linear which gives constant strain. For a linarly elastic material this assump- 
tion yields constant stress as well. 

If w, the displacement at any point along the length of the bar, is given by 

w = ax + b (59) 

where a and b are two undetermined coefficients and 
nate system , then the end displacements v 

X is the coordinate of the point in the local coordi- 
and V are given by 

Xl    ' 

X2  1 

(60) 

where x. and x_ are the coordinates of the two ends in the local coordinate system. Then the shape func- 
tion (Eq. (43)7 corresponding to this linear displacement field can be written as 

1 
(x - X2), -(x - x^) 

- ' (x^ - Xg) 

From the strain-displacement relations, the axial strain in the element is given by 

(61) 

3W 
3X 

(62) 

From the principle of virtual work Eq. (48) the individual elements of the member sitffness matrix can be 
written as 

^j 
4^') e[^Uv-   (-1)^""JM 

(63) 
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where A is the oross-sectional area, L is the length of the member, and E is the modulus of elasticity of 
the material. The member stiffness matrix is given by 

The member force matrix is given by 

The stress in the member is given by 

or 

k = AE 1   -1 
■1   1 

s = k V 

"x = ^ ^x 

(64) 

(65) 

(66) 

A ■ A (67) 

The strain energy in the element is given by 

^■h'^- 
(68) 

^i = 2 "x S '^ '■ 
(69) 

TRIANGULAR MEMBRANE ELEMENT 

The membrane triangle is the basic plate element in the program. It is used to construct the mem- 
brane quadrilateral as well as the shear panel with some modifications. The membrane triangle can be used 
effectively in all cases where the primary loading is inplane forces. These include top and bottom skins 
of aircraft wings, flanges of I and box beams when they are subjected to constant normal stresses (tension 
or compression) only and skins of sandwich construction. Howewver, they are not suitable for situations 
where high stress gradients exist. For example, they are unsuitable for spars and ribs of wings and other 
lifting surfaces, webs of I and box beams and flat plates where the primary load is bending. If used in 
such cases, they overestimate the stiffness or generate singularity. Fig. 10 shows the triangular element 
with its local coordinate system. The generalized coordinates v., Vp ,  , v, represent the inplane dis- 
placements of the three nodes in the local coordinate system. The displacement field in the element is 
assumed to be linear. This gives constant strain in the element. For a linearly elastic material the 
stress in the element will also be constant. ,, 

The linear displacement field in the element can be represented by 

w^ = a-i X + b-i y + c^ 

a- X + bp y + c, 
(70) 

where w and w are the x-y displacements in the plane of the plate in the local coordinate system, 
b etc. are the six undetermined coefficients. Eq. (70) can be written in matrix form as follows: '^' 

w = 
X y 1 0 0 0 

0 0 0 X y 1 

^1 

"l 

'^l 

32 

h 
C2 

_     _ 

(71) 
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The six unknown coefficients can be uniquely determined by the six boundary conditions at the nodes. 

x-i y-i 1 

Xg yg 1 

>^3 ^3 ^ 

0 0 0 

0 0 0 

0 0 0 

0 0 0 
r         — 

^1 

0 0 0 ''1 

0 0 0 ^1 

''I ^1 1 H 
X2 ^2 1 h 
^3 ^3 1 C2 

(72) 

where x , y ,  , x. and y . are the coordinates of the three nodes of the triangle in the local coordi- 
nate system. It should be noted that the nodal displacements are grouped into x and y directions, so that 
the nodal coordinate matrix on the right hand side partitions into a diagonal matrix.  The inversion of 
the partitioned diagonal matrix involves simply the inversion of the component matrix.  Now the shape 
matrix $ is given by 

(j> = X Z 
-1 

(73) 

where the matrix x is given by 

X y 1  0 0 0 

0 0 0 X y 1 
(74) 

and the Z matrix is given by 

The coordinate matrix X is given by 

(75) 

^1 

^2 (76) 

It is interesting to note that each column of Z~ represents a unit displacement mode: i.e. the jth 
column of the inverse represents a displacement mode in which v.=1 while all other nodal displacements are 
zero (See Fig. 11). This fact is used to advantage in determining the elements of the member stiffness 
matrix. 

From linear strain-displacement relations the strains can be written as 

8W., 

^X  3x ^1 (77) 

3W 

9y  "2 
(78) 

xy 
!!x^^ 
3y   3x b^ +62 (79) 

From the principle of virtual work (Eq. (H8)) the elements of the member stiffness matrix can be written 

^ij 
^'^'  s(J) dV c(^") E .(J) dV 

(80) 

where ?   and e ■^ are the stress and strain matrices corresponding to the unit displacement modes 
explained under Eq. (76).  E is the elastic constants matrix with respect to the element stiffness axis 
(See the local coordinate system of the triangular element in Fig. 10).  If the material axis and the 
element stiffness axis coincide, E would be the same as E given in Eq. (42) for orthotropic materials. 
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In layered composite elements, however, the material axis and the element local axis do not generally 
coincide and transformation of E to the element local axis is necessary before using it in Eq. (80). 
This transformation can be accomplished by considerations of energy invariance with axis rotation 'por 
instance the element strain energy with respect to the material and the element local axes can be written 
as 

T   - 1   t P 
m  2 Sm bm Sm (81) 

.-It 
\ - 2 S (82) 

where S^ is the strain matrix with reference to the material property axis.  S is the strain matrix with 
reference to the element local axis. The strain matrices with reference to the material and element local 
axes are related by 

Sm = I S 

where T, the strain transformation matrix, is given by 

(83) 

T = 

Cos e  Sin e   ^Sin2e 

Sin^e  Cos^e  -isin2e 

-Sin2e SinZe Cos2e 

(84) 

and where 0 is the angle between the element local axis and the material axis. By substituting Eq. (83) 
in (81) and invoking the condition of energy invariance with axis rotation, the expression for the elastic 
constants transformation can be written as 

= T E„ T (85) 

The linear displacement variation in Eq. (70) implies constant strain, therefore the integral in Eq. (80) 
can be replaced by the volume of the element: 

k.j=l|X|t,(i)'Ee(J! (86) 

where |x| is the determinant of the nodal coordinate matrix which represents twice the area of the element 
and t is the thickness of the element. Now the stiffness matrix of the element is given by 

k = T |X| t 

,0)^,(1) 

,{2)^E ji; 

.(e)' ^ 

The stress matrix in the element is given by 

= (2)' p A2)__  (2)t , (6) 

(1)  J6)*L(2) ,(6)* -(6) 

(87) 

(88) 

The stresses obtained by Eq. (88) are with respect to the element local axis. It is often necessary to 
tranform these to the material property axis. This transformation can be obtained by 

~m  -s - (89) 

where ?^ is the stress matrix with respect to the material axis. The stress transformation matrix from 
the element local axes to the material axis is given by    |— 

Cos e  Sin e  Sin2e 

2     ? 
Sin e  Cos e -Sin2e 

-|sin2e |sin2e  Cos2e 

(90) 
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The member force matrix is given by 

S  =  !<y (g,) 

The strain energy in the element is given by 

1 i«i .. t T. = X 1X1 t a e '■    ■ (92) 

or 

T. = } s* y (93) 

The next important step in the evaluation of the stress state in an element is the selection of a 
suitable failure criteria because of the combined stresses (a , a    and a ) in the plate elements.  For 
isotropic materials the energy of distortion or the Von-Mises criterion is accepted as most satisfactory. 
The effective stress according to this criterion is given by 

When the allowable stresses are different in different directions, the effective stress ratio (ESR) 
according to the modified energy of distortion criterion can be obtained by 

a    2        a a a c'  2 
ESR =  (3^)  + (^)     -   (^) + (#) 

1/2 
(95) 

where XX and YY are the tension or compression allowable in the x and y directions respectively, and ZZ is 
the shear allowable. Then the margin of safety (MS) is determined by 

MS=^   ^ C96) 

The requirement of a positive margin of safety constitutes a stress constraint in optimization. 

The failure criterion as given by Eq. (95) is adequate for isotropic as well as equivalent ortho- 
tropic structures. However, in the case of fiber reinforced layered composite materials, the question 
becomes much more complicated and there is little agreement on the type of criterion to be used. The 
fiber failure, matrix failure, delaraination, and the effects of out outs and bolt holes can trigger 
different failure modes. It is difficult, if not impossible, to combine all these effects into a single 
neat failure criterion as in metal structures. The present practice consists of a number of emperioal 
criteria whose justification sometimes appears to be more emotional than rational. A review of some of 
these criteria is given in References [12,13]. The "OPTSTAT" program uses the failure criterion given by 
Eq. (95) for isotropic and equivalent orthotropio structures. For layered composite structures the fiber 
failure is used as a failure criterion. However, it is a relatively simple matter to modify this criter- 
ion to suit other requirements. 

The composite element in "OPTSTAT" consists of stacked orthotropio membrane elements. Each ortho- 
tropic element (layer) in the stack represents the combined effect of all the fibers in one direction. 
The stiffness of the composite element is obtained by adding the stiffnesses of the component orthotropio 
elements representing all the fiber directions. This addition of the stiffnesses can be written as 

-   I   k. (97) 

where k. represents the stiffness of all the fibers in one direction and l  represents the number of fiber 
directions in the composite element. The matrix k for each direction of fibers is determined by 
Eq. (87).  It is also assumed, for the summation in Eq. (97) to be valid, that the stiffness matrices k 
in each composite element are determined with respect to the same set of reference axis such as the local 
element axis. 

The composite element in "OPTSTAT" has at present a provision for four fiber orientations. These 
fiber orientations are 0 , 90 , and +15 . It is further assumed that the composite element is made of a 
balanced laminate. By adjusting the relative percentages of the fibers, the optimum directional proper- 
ties of the laminate can be obtained. In assessing the failure of the laminate a weighted average of the 
effective stress ratios is considered instead of the failure of the individual fibers. This weighted 
average ESR is computed by 

ESR = ag ESRQ + ago ESRgg + a^g ESR45 + a.45 ESR.^g (98) 

where a  a , a  and a        are the percentage of fibers in the 0 , 90 and +45 respectively. Similarly 
ESR„, ESR„„, ESR,,^ and ESR „^ are the effective stress ratios of the 0°, 90°, 45° and -45° layers. 

0     90     *t5 —nb 
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QUADRILATERAL MEMBRANE ELEMENT 

The quadrilateral element is most frequently used to represent membrane skins unless the corners etc 
require the use of the triangular element. Fig, 10 shows the local coordinate system and the generalized' 
coordinates (displacements) v^ through v . The element is assumed to be a flat plate, and all nodes are 
assumed to lie on a plane connecting the first three nodes (1,2, and 3). In effect the warping in the 
element is ignored. This approximation results in an overestimation of the stiffness of a truly warped 
quadrilateral element. In most oases the effect of the approximation is small, and it can be further 
reduced by reducing the mesh size of the model in the regions of high warping, 
too large, the quadrilateral should be broken up into two or more triangles. 

However, if the warp is 

As mentioned earlier, the stiffness of the quadrilateral element is determined by breaking it into 
four component triangles as shown in Fig. 12. A fictitious node in the quadrilateral is located by 
averaging the coordinates of the four nodes as given by 

x^ + Xg + Xj + X. 
(99) 

yi + yg + yg + y4 
(100) 

1      '1 

FIG. 12.  Quadrilateral or Shear Panel Divided Into Four Triangles 

The stiffness of the four triangles is then computed by Eq. (87) in the local coordinate system shown in 
Fig. 10. Addition of the four stiffness matrices gives a 10 x 10 stiffness matrix with two degrees of 
freedom included for the fifth node. This fictitious node is later removed by static condensation before 
adding to the total structure. The procedure for static condensation is outlined next. 

The force displacement relations of the 5 node quadrilateral are written as 

5Q -Q -Q (101) 

where the subscript refers to the quadrilateral element with 5 nodes. Eq. (101), partitioned to isolate 
the degrees of freedom of the fifth node, can be written as 

■U 

-I, I  J !^I, II 
-II. I I -II, II fll 

(102) 

Eq. (102) can be written as two separate equations 

?I = !^i.i  Ti * ki.ii Tii (103) 

-II ~ -II,I i^i * hi,u -II dot) 

Since the fifth node does not actually exist in the original model, no external forces can be applied to 
this node. This condition gives 

-II " "-II,II ^U,l  -I (105) 
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Substitution of Eq. (105) in (103) gives 

h  " ^-1,1 ■ -I,II -11,11 -II,I^ -I (106) 

From Eq. (106) the stiffness matrix of the original quadrilateral can be written as 

- " -II ■ -I,II i^II.II !^II,I ^^°'^^ 

The stiffness as obtained by Eq. (107) is added to the total structure after appropriate coordinate 
transformations to the global coordinate system. Vfhen the structure displacements are determined, the 
fifth node displacements can be determined by Eq. (105). Now the stresses in each triangle can be deter- 
mined as before. The effective stress ratio is determined for each triangle separately (Eq. (95)), and 
then a weighted average is used in computing the effective stress ratio and the margin of safety.  This 
weighted average is computed by 

(ESR)^ A^ + (ESR)2 ^2 + (ESR)3 A3 + (ESR)^ A^ 

^^^  "       A^ + A2 + A3 + A4 ^^ '—" (108) 

where (ESR), through (ESR)„ are the effective stress ratios of the four triangles. A through A are the 
respective planform areas of the triangles. In the case of fiber reinforced composite elements a further 
averaging across the thickness of the elements is used, as in Eq. (97), in determining the effective 
stress ratio.  Now the margin of safety MS is computed as before by Eq. (96). 

SHEAR PANEL 

As the name indicates the shear panel is devised for the purpose of representing shear transmitting 
elements.  For example, in wing structures the top and bottom skins can be represented by membrane 
(triangle and quadrilateral) elements.  If the same elements are used for spars and ribs, the resulting 
finite element model grossly overestimates the stiffness of the structure. What this means is that the 
displacements obtained by this model will be smaller, or if this model is used for dynamic analysis, the 
frequencies of the structure will be much higher and cannot be matched with the results obtained from 
ground vibration tests. This behavior is due to the assumption of constant strain (stress) in the mem- 
brane element formulations.  Most web elements in box or I-beams carry primarily shear and some normal 
stresses. In other words their deformation is primarily due to shear and not due to normal stresses. The 
normal stresses in webs usually have steep stress gradients, and the assumption of constant stress (or 
strain) is not Justified. To offset this difficulty, and yet preserve the simplicity of the constant 
strain elements, a shear panel was formulated (Ref. 9) with the assumption that it carries only shear 
stresses. The bars and other membrane elements that surround the shear panel are supposed to carry the 
normal stresses. Such a situation does not actually exist in reality and thus the shear panel is an 
emperical element. However, the models built on such an assumption appear to produce satisfactory 
results. 

Until recently it was a common practice in aircraft companies to model wings, fuselages, and 
empennage structures simply by bars and shear panels to obtain primary load path information. In such 
idealizations it was a common practice to assign a third of the cross-sectional area as spar and rib caps 
and the remainder for the shear panels.  It should be pointed out that every shear panel must be 
surrounded on all four sides by normal stress carrying elements such as bars or membrane or bending 
elements. If the natural model does not contain such an element on any side of the shear panel, a nominal 
(or fictitious) bar (post) must be provided. Otherwise the model will have a singularity. 

The shear panel can be constructed out of four triangles with the fictitious node inside as in the 
membrane quadrilateral discussed earlier. However, the stiffness matrices of the component triangles are 
determined by considering only the shear strain energy (Eq. (86)). 

where G is the shear modulus, and £jjy and ^^^ are the shear strains due to the unit displacement modes 
discussed earlier. There is one point that must be made here. The shear stress (strain) in an element 
changes with the orientation of the reference axis. Thus the stiffness matrix of the element can be 
sensitive to the reference axis. For rectangular elements the shear strain energy would be the same 
regardless of which side is selected for the reference axis. However, for quadrilaterals the stiffness 
matrix does depend on the reference axis. The errors produced by such departures are usually not signi- 
ficant, but it is worthwhile to make note of the assumptions involved. 

As in the quadrilateral element the shear stresses in all four triangles are determined separately 
but with respect to the same reference axis. Of course, the normal stresses in the shear panels have no 
meaning. The margin of safety is determined by a weighted average of the effective stress ratios (ESR) as 
in the quadrilateral. The strain energy is determined by considering only the shear stress and strain. 
It should be noted that the shear panel can be used only as an isotropic or equivalent isotropic element. 

There are three major steps in building finite element analysis software.  The first step is deriving 
the appropriate shape functions for the elements, so that these elements can model the behavior of the 
structure adequately. The order of the shape function should reflect, at least to a degree, the order of 
the differential equation that models the physics of the problem. The volume integration indicated in 
Eq. (48) is the second major step. Numerical integration is most appropriate for handling arbitrary 
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boundaries and higher order slope functions. Most finite element programs use Gaussian quadrature. The 
third major step is the solution of the load deflection equations. Gaussian elimination or variations of 
it are most appropriate for taking advantage of the symmetry and sparseness characteristics of the global 
matrices. 

5.  HIGHER ORDER INTERPOLATION AND SOLID ELEMENTS 

So far we have discussed membrane elements with linear polynomial functions as displacement approxi- 
mations. Here we will discuss the higher order interpolations, isoparametric formulations and the solid 
elements. 

ROD ELEMENTS 

Fig. 13 shows linear, quadratic and cubic polynomial approximations for displacements of the rod 
element. 

u(x) (DISPLACEMENT) 

 . X (DISTANCE) 

u(x) = ax +b LINEAR 

• u(x) = ax^ + bx + c QUADRATIC 

• u(x) = ax' + bx^ +CX + d   CUBIC 

u, u 

3 

c: 
*V| X2 

Ui Uj u 
y  C t ' 
-^ X2 1 

X3 

Uj 

' 1 

u, U3 U4 
„ €:: ■ k 
Xi ^1 

X2 , 1 
X3 J 

Ix, 

FIG. 13.  Polynomial Approximations for Displacements of the Rod Elements 

The number of grid points of the element are equal to the number of coefficients of the polynomial func- 
tion. The functions for these elements are defined as 

m+1 

I 
i=l 

(110) 

where m is the number of segments of the element, ♦ are the shape functions and u. are the discrete dis- 
placements at the nodes or grid points. There are two ways to determine the shape functions. The direct 
way, as was done in the previous section, involves solving for the coefficients of the polynomial func- 
tions by assigning the discrete displacement values at the grid points whose coordinates x. are known. 
For example the value of u, is given by 

3    2 
ax. + bx + ex + d 

(111) 

for the cubic case. 

Similarly by substituting the displacement values for the other grid points, the coefficients a, b, c 
and d can be solved in terms of the unknown displacements u,, u_, u- and u^. Now sutstituting the 
coefficients into the original displacement equation, an expression for the shape function can be 
obtained. However, this procedure is cumbersome when the order of approximation is higher. The use of 
Lagrangian interpolation is much more appropriate for higher order approximations. 

u  = 

m+1 

i>1 

0i    U: m = NUMBER OF SEGMENTS 
(112) 
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♦ i = 

m+1 
(X-Xj) 

m+1 
TT  (Xj-Xj) 

i = i 

lAGRANGIAN INTERPOLATION FUNCTION 
(113) 

i| Aj; 

i*\ 

Where 'I', is the ith shape function, x. is the spatial coordinate of the ith grid point, and x is the dis- 
tance at which the displacements are to be interpolated. The shape functions for each of the three 
approximations are given in Fig. 14. 

• LINEAR u(x) = <>, u,  +^2 Uj 

0,(x)  = X- X2 X-Xi 

X2-X, X,-X2 

• QUADRATIC 
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• CUBIC 

U(X)   =   (^,U,    +((>2U2    +<t)3U3     +(i>,Ut 
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«3(X) 
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i(x) 

(x-XiKx-XjXx-x,) 
(Xi-XjXxrXjKxi-xJ  ^'       (X2-X,)(X2-X3)(X2-X4) 

(X-X,)(X-X2)(X-X4) 
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FIG. 14.  Shape Functions for the Rod Elements Using Lagranglan Interpolation 

SHAPE FUNCTIONS - PLANE STRESS ELEMENTS 

The shape function for a bilinear plane stress element is defined as before in Fig. 15. 

BILINEAR ELEMENT       y 

u = * 

u' = [u vl 
-Ux 

U^, =  lU, V,  U2 Vj   U3 V3  U,  V4] 

ie = <I>,   0   4>2   0   *3 -0   *4   0 

0        <J)i     0        *2    0        ^3    0        *4 

U    =    <l>, U,    +    <1>2 U2   +    <t>3U3    +    <i>t\it 

V    =    <1>, V,    +    <I>2 ^2   +    'I'sVs    +    '1>4V4 

»,-0-l)('-S) 

*3 = 8 b 

FIG. 15.  Shape Function for a Bilinear Plane Stress Element 

This shape function represents linear displacements along the edges and a product of x and y terms in the 
interior. It represents an incomplete polynomial but nevertheless gives satisfactory results. 
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Extension of the bilinear formulation to an arbitrary quadrilateral can be facilitated by introducing 
the concepts of parametric mapping and isoparametric elements. When the displacements within an element 
and its boundary are approximated by the same shape functions, then the element is called an isoparametric 
element. This isoparametric mapping is shown in Fig. 16. Isoparametric mapping makes numerical integra- 
tion over the domain of odd shaped elements easier, particularly in obtaining element stiffness matrices. 
Also in the case of higher order elements the curved boundaries can be modeled more accurately, because 
the boundary of the elements is also represented by higher order approximations. 

h«- 1 1 

4 

1 

3 

2 

1 

1 

y = Fj(f.i) 

•- x,u 

FIG. 16.  Isoparametric Mapping 

The new independent non-dimensional coordinates 5 and n are defined as shown. The shape functions for 
bilinear, biquadratic and cubic quadrilaterals are given in Fig. 17. 

• BILINEAR ELEMENTS 

4, ^3 

4-1 =y4( 1 +« « i)(1 +r)ti j) 

BIQUADRATIC ELEMENT 
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2  <J) = 1/32 (1 +S|j)(1 +TiTi|){9(f' +Ti')-lOJAT CORNERS 

FIG. 17.  Shape Functions for Bilinear, Biquadratic and Cubic Quadrilaterals 

The isoparametric formulation of the solid elements parallels that of the membrane elements. The 
shape functions for the linear quadratic elements are given by Fig. 18. 

• LINEAR (8 NODES) 
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FIG. 18.  Shape Functions for the Linear Quadratic Elements 
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The isoparametric mapping involves a change of coordinates from the x, y, z to the 5i TI, ? system. 
This transformation must be reflected in the formulation of the element stiffness matrix. The element 
stiffness matrix in the x, y, z coordinate system and the required transformations to the 5, ri, ? system 
are given in Fig. 19. 

ELEMENT STIFFNESS EVALUATION 

JL = Ivie S!l£*e "» 

COORDINATE TRANSFORMATION 

3*1 

dx       3y       3j^ 
3f    af    a« 
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Tji      3i      an 

3«        a»        3; 
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3*_ 
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a,; 

II] lACOBIAN MATRIX OF TRANSFORMATION 

■9*1" 

a. 
■3*1' 

9i 
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a, »iir' 
3*1 
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a*i 

k-f'   r'   r'  *'0'   E   D  <t>    detOJddil 
'■'   J    J    J    ~e~ '~e ?   1   J 

FIG. 19.  Element Stiffness Transformation from the x, y, z 
Coordinate System to the ?, u, 5 Coordinate System 

NUMERICAL INTEGRATION 

The integration indicated in the element stiffness matrix can be quite cumbersome, and most often 
numerical integration is the only recourse for higher order elements. The basis for deriving most 
numerical integration quadratures is the approximation of the integrand by a finite degree polynomial 
which can be integrated readily. For example, consider an integral I defined as 

I =  / F(x)dx (114) 

where the integrand F(x) is complex and cannot be readily evaluated. In such a case the function F(x) can 
be approximated by an nth degree polynomial as shown 

n 
(115) 

F(x) + a.x + + a X 

There are (n+1) unknown coefficients (a ) in the above approximation. A criteria is necessary for 
evaluation of these coefficients. One such criteria is to require that the approximate function satisfy 
the exact functional values at (n+1) equal points between the interval a and b. Now the interval a to b 
is divided equally into n divisions, and the coordinates of the (n+1) points are given by x , x^,...,x . 
The criteria can be expressed by a matrix equation 

F = X A 
-e  ~e~ (116) 

where F is the vector of function values at the (n+1) points 

F = [F F,F„ 
e    o 1 2 !'_] 

(117) 

A is the (n+1) vector of polynomial coefficients 

A = [a^a^a^ \^ (118) 

The matrix X is given by 

^e = 

1  Xo  X„ 

X^. 

X ̂1 
^   \    K    .     .    .     X" 

X 

(119) 
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Now the vector of polynomial coefficients can be determined by 

A = X F 
~e ~e (120) 

Then the polynomial F(x) can be written aa 

F(x) = x'x ■'■F 
~ -e ~e (121) 

The polynomial integrand can be integrated with ease. The degree of the polynomial and the associated 
criteria for determining the coefficients of the polynomial are the limiting factors. There are a number 
of improvements to this basic concept. Before outlining two of the improved approximations, let us 
examine an^alternative to the above procedure. When the degree of the polynomial approximation is high, 
finding X~ is not the most convenient or desirable procedure. Instead the alternative is to use nth 
degree Lagrangian interpolation as in the case of the shape functions. In terms of the Lagrangian 
interpolation functions, F(x) can be approximated by 

F(x) = *^F^ + *^F^ + + (j> F 
n n (122) 

where the Lagrangian interpolation functions are given by 

.| = 

m+1 
IT 
i = i 

(X-Xj) 

m+1 

TT  (Xj-Xj) 
j = 1 

LAGRANGIAN INTERPOLATION FUNCTION (123) 

The function values at (n+1) points are F ,F- F . An improvement to the Lagrangian interpolation is 
the Newton-Cotes interpolation which is written as 

f   F(x)dx = (b-a)  V C"F. + R 
•' >  i X   n (124) 

where R is the remainder. The C. are the Newton-Cotes constants for numerical integration with n samp, 
ling points. These constants are given in numerical tables. The interval a to b is divided into n equi 
segments. 

equal 

b-a 
(125) 

The well known trapezoidal rule of integration corresponds to n=1, and Simpson's rule corresponds to n=2. 
The accuracy of the Newton's-Cotes approximation can be improved by either increasing the order of approx- 
imation or by repeated use of a lower order approximation. 

The Gauss-quadrature for numerical integration is a further improvement over both of the above 
methods. Most finite formulations in practice use Gauss-quadrature and it is given by 

-' -' -' iVi j=l K-l  ^ n  J '  t 
(126) 

The coefficients and the integration points are given by 

Absoissa(s) Weight Coefficient 

2 +0.57735026919 1.0 

3 
+0.77459666924 0.5555555555 

0.0 0.88888888888 

4 
+0.86113631159 0.34785484514 

+0.33998104358 0.65214515486 
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Integration Order 
Recommended' Maximum Order 

2x2 2x2 

2x2 3x3 

2x2 3x3 

3x3 Hxt 

The recommended integration order for plane stress isoparametric elements is as follows: 

Element 

t-Node Rectangle Element 

H-Node Distorted Element 

8-Node Rectangle Element 

8-Node Distorted Element 

A similar recommendation for solid elements is as follows: 

Linear Elements 2x2x2 

Quadratic and Cubic Elements      3x3x3 

ADDITIONAL INFORMATION FOR SOLID ELEMENTS 

The stress-strain relations for three dimensional elements with thermal effects is given by 

s = Qjs - gt> (127) 

where G is the elastic constants matrix and e is the thermal strain matrix, 
matrix for the three-dimensional isotropic case is given by 

The elastic constants 

G = i  

(i-v) V  V   0 0 0 
V (\-V) V    0 

V y (i-V)  0 

0  0  0 (i-2.v)/2 

0   0   0    0   ( 

_ 0   0  0   0 

0 
c 
0 

0  (1 

0 
0 
0 
0 

(128) 

where E is Young's modulus and v is Poisson's ratio. 

The thermal strain is given by 

e=aT=[aaaa       a       a]T -t       -e- X    y     z    xy    xz     zx    ~ 

= [a a a o o o]T 

The relationship between the element's interior temperature and the nodal temperatures is given by 

T = AT 

(129) 

(130) 

T^ is the vector of temperatures of the grid points to which the element is connected. i|> is the shape 
function, and T is the temperature distribution assumed in the element. 

The elastic constants matrix for a three dimensional element made of anisotropic material is given by 

G„ = 

CE,E Z'-i CE,E3 CE,t.2 

CE,E, 

-ii-2. 

SYMMETRIC 

0 0 0 

0 0 0 

0 c 0 

^44 0 0 

Gss 0 

G && 

(131) 
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where E^, E and E are the moduli of elasticity in the three material axes direction. The v's are the 
Poissons ratios, and G^^,  G  and G,, are the shear moduli in the three material axes directions. The 
elastic constants can be transformed to any other coordinate system by the transformation indicated in 
Section 2 and repeated here. 

0=1*^0 1 (132) ~e  - -m~ -^ 

where the transformation matrix T is the same as that given for the strain transformation in Section 2. 
The thermal ooeffioient transformation is given by 

~e  ~  ~m U33J 

So far the discussion has centered around the generation of element stiffness matrices, stresses, 
strains, etc. Once the element information is generated in the local coordinate system, the global 
stiffness matrix, etc. can be generated by transforming the information from the local coordinate system 
to the global coordinate system and adding to obtain the master stiffness matrix (see Eq. (54)). To solve 
for the unknown displacements we still need load matrices (see Eq. (55)). In the case of simple linear 
elements these load matrices can be generated by a consistent formulation or by a lumping procedure 
derived from inspection. Either way the results will be within the bounds of the finite element approxi- 
mation. This is not the case when higher order isoparametric elements are used in the model. Then the 
recommended procedure is to generate the load matrices consistent with the formulation of the element 
stiffness matrices. For example, the nodal (grid) forces due to a distributed surface pressure must be 
obtained by 

~p  " fi  Eds (134) 
s 

where P is the vector of grid forces at the discrete grid points of the elements due to the pressure p 
distributed over the surface. Similarly, the grid forces of a solid element due to distributed body 
forces can be written as 

P  =  fi'^Rdv 
-P   V   ~ (135) 

where R is the body force vector. 

The consistent formulation for the discrete thermal load can be written as 

V 

where C is given by 

C = D$ (137) 

In concluding the solid elements discussion it is worthwhile pointing out the expected output for 
these elements. In general, most of the solid element information is generated in the basic coordinate 
system of the element. Then the information can be transformed to the global coordinate system as desired 
at each grid point. 

The element stresses are computed by 

? = 5e?*'fe - M-e ' (138) 

The stress output for the following elements is generally given at 

Linear Element - fight corner points and at the center 

Quadratic and Cubic Elements 

» Eight corner points 

• Center of each edge 

" Center of the element 

This output generally consists of 

• Principal stresses 

» Principal angles 

• Mean stress 

• Octahedral shear stress 
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t^n = 3 (<^^ + <J„ + oj X   y   z (139) 

The octahedral shear stress is defined as 

''0= [i^(Sx + ''n)'+(^^<^n)'+^^z + ''n)'^] 

1/2 

(ItO) 

where S , S and S are the principal stresses. 

6.   BENDING ELEMENTS - BARS (BEAMS) AND PLATES 

So far the discussion has centered around plane stress (membrane) elements and solid elements. 
Bending elements are necessary when transverse forces are significant, and when the elements cannot carry 
these forces by membrane action alone.  For example, a wing box constructed out of spars, ribs, skins and 
rods can transmit the overall loads quite well by membrane action alone, even though the aerodynamic lift 
forces produce significant bending and shear in the wing box. The bending caused by the aerodynamic lift 
is resisted by internal couples generated by the tension and compression in the bottom and top skins of 
the wing where the shear is carried by the spars.  However, locally the skins have to carry the pressure 
load between the substructure supports (spar and ribs) by a bending action. Also compression in the top 
skin can trigger panel buckling in the top skin. This buckling resistance must also come from the bending 
action of the plates. So the bending behavior is an important modeling consideration in finite element 
analysis. 

Bars 

Among the line elements only the axial force member has been discussed so far. The three dimensional 
line element which will be referred to as a bar or a beam is the most versatile element in the finite ele- 
ment library. This element can be used very effectively for developing stick models of most aerospace 
structures. These stick models are very useful in conceptual design for studying the overall dynamic 
behavior of a vehicle. For example, when details of the overall internal structure are not fully devel- 
oped (or are not known), the dynamic behavior, such as frequencies, mode shapes, etc., can be adequately 
predicted for a preliminary assessment of the stability and control characteristics of the vehicle. These 
elements are easy to model, and they permit rapid parametric studies for improving the handling qualities 
of the vehicle. 

The most general three dimensional bar element has six degrees of freedom at each end. Three of 
these are translational and three are rotational degrees of freedom. The degrees of freedom of the bar 
element are shown in Fig. 20. 

2 

5 

FIG. 20.  Degrees of Freedom of the Bar Element 

This bar element can resist an axial force (tension or compression in the x-direction), shear in the y and 
z directions, twisting about its own axis (x-axis) and bending about the y and z axes. These are the six 
stress-resultants corresponding to the six displacement degrees of freedom at each end. The axial 
(tension/compression) behavior of the bar can be assumed to be governed by a first order differential 
equation. Similarly, the torsional behavior is governed by a first order differential equation. The 
bending and shear behavior in each of the two planes (xy and xz) is governed by one fourth order differ- 
ential equation. The Implicit assumption in the foregoing discussion is that these behaviors are 
uncoupled. For most beams (cross-sections with at least one axis of symmetry or the reference planes are 
the principal planes) this assumption is valid. In such a case the element stiffness corresponding to the 
12 degrees of freedom can be written by superposition of the four stiffnesses. 

where 

k, + k„  + k„  + k^ 
-A  -Bxy  ~Bxz  ~T 

(141) 

-^A 

12x12 Bar element stiffness matrix 

12x12 Axial stiffness contribution 

kg^    12x12 Bending stiffness in the xy plane 

kg     12x12 Bending stiffness in the xz plane 

k_    12x12 Torsional stiffness 

all of these matrices are symmetric about the diagonal. 
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Elements of k. 

k  - t  - 1     AE 
(142) 

The remaining elements are zero. A is the cross-sectional area of the bar, E is the material modulus of 
elasticity, and L is the length of the bar. 

Elements of k„  ~Bxy 

•^2,2  "S,8  H 

-,-1 

K AG   12EI 

■^2,6  "2,12   6,8    8,12  2 ^z 

2 El 
k   = k     = — r  +  
6,6   12,12  4  z   L 

(143) 

,2     El 
,   = L_ ? 
"^6,12  4 '^z   L 

The remaining elements are zero, G is the shear modulus of the material.  I is the moment of inertia of 
the cross-section about the z-axis, and K is the area shear reduction factor in the y-direction. 

Elements of k_ , . ~Bxz . 

3,3 "^3,9 " S,9 " '^y K AG  12EI 
z        y-i 

- k. 3,5 S,ll  '^5,9  S,ll = 2 '^y 

S,5  ^11,11 "4 ''y ■*" L 

(144) 

El 

S,ll ' 4 ""y   L 

The remaining elements are zero. I is the moment of inertia of the cross-section about the y-axis, and 
k is the area shear reduction factor in the z-direotion. z 

Elements of k^ 

4,4 ■^4,7  ''y,? 
GJ 
L (145) 

The remaining elements are zero. J is the torsional constant. A list of approximate formulas for the 
torsional constants is given for popular sections in the Appendix. For most beams the deformations due to 
shear are small compared to bending, and the terms containing the area shear reduction factors can be 
neglected. Exceptions are when the bars are very short and their cross-sectional dimensions are large 
(deep beams). The length referred to in the previous statement is not the element length, but refers to 
the span of the beam between the supports. 

Generally, there are four important cross-sectional properties for bar elements. These are the 
cross-sectional area (A), the moments of inertia about the y and z axes (1,1), and the torsional 
constant (J). ^ 

The bar element can be made very versatile by allowing offset provisions at the two ends, by allowing 
pin flags of up to 5 degrees of freedom at each end, and also by allowing an offset in the elastic and 
mass C.G. axis. The latter provision allows for the modeling of wing surfaces as beam elements and 
simulates the bending-torsion coupling behavior. Then the element stiffness needs modification 
accordingly. 

Bending Behavior of Plates 

Most plate structures are subjected to both inplane and out of plane forces. The out of plane forces 
normally induce bending in the plates.  If the nonlinear interaction of the inplane and out of plane 
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behavior is small, then these two effects can be uncoupled. The Inplane behavior can be represented by 
membrane elements as discussed earlier. The bending behavior can be derived separately, and the two 
effects can be superimposed to obtain the combined behavior. This procedure is analogous to the bar 
element formulation. Except in the case of significant nonlinearities, this procedure is valid for plates 
made of isotropic materials and symmetric and balanced laminates. For unsymmetric laminates, however, the 
coupling between the inplane and out of plane behavior cannot be avoided, even when the nonlinear effects 
are small. This coupling and uncoupling behavior can be explained simply by writing the strain 
displacement and stress resultant strain curvature relations. 

The displacements of a point in the plate can be represented by u, v, w, and they are given by 

3w 
u = u  - Z^ 

o    3x 

3w 
 o 
3y (1t6) 

where u , v and w are the midplane displacements of the point. 

Similarly the strain curvature relations can be written as 

'^x' e 
X 

0 

"k 
X 

E 
y 

= 
\ 

+ Z k 
y 

e xy 
'^^0 

k 
xy 

(1t7) 

The e^ > e  and E   are the mid-surface strains and k , k and k  are the plate curvatures. These are xy^ 

are given by 

3u  o 
3x 

3v. 

X' y xy 

3^w 

3x 

3^w 

y„  3y 

3u   3v 

3y 

3 w 

(118) 

xy   3y   3x     xy    3x3y 

The stress-strain relation in a laminate can be written as 

a = Qe (149) 

The elastic constants matrix Q is given by removing the 3rd, tth and 5th rows and columns from the G 
matrix written in Eq. (128). 

Now the relation between the stress resultants (inplane forces and moments) and the stretching and 
curvature strains can be written as 

N. 
H, 
Nxy — 
M, 
MY 
M,, 

K   A,^ A„ I B„ B,^ B,^ 
A,£ Aea Azj, I B,,, Bjg Bj^ 
Ail ^z± ^e.&_ [_B,i_ Ba3_B6t 
B„ B,£ B,^ [D,, D„ D,e 

I" I" k" I S^ S^^ ^^'" 
(150) 

where the coefficients A. ., B. . and D. . are given by 

h/2 K/2 y2 
(151) 

For an isotropic or composite plate with a balanced and symmetric laminate, the B matrix is zero. As a 
result the inplane and bending behavior can be uncoupled provided the nonlinear interaction between them 
is not significant. Based on the above discussion the equivalent stress-strain law for inplane behavior 
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can be written as 

C5K '^»l '^\Z     "|3 

Aig.  n.j2 A^-j 

M3 <zi ^33 

rcKi 
^Y 

_£xY_ 
(152) 

For bending the equivalent stress-strain law can be written as 

If the inplane-bending behavior can be uncoupled, then the plate element stiffness can be written as 

-^ 

D>e D,3 

Da D33 

(153) 

h^ + K (151) 

where k„ is the membrane element stiffness matrix derived (for the triangle and the quadrilateral) 
earlier. However, it was derived only with respect to the inplane displacement degrees of freedom. To 
expand this matrix to include the bending degrees of freedom, we can simply add rows and columns of zeros. 
For membrane elements the two degrees of freedom corresponding to the two displacements were specified for 
each grid point. The degrees of freedom for bending behavior consist of a transverse displacement (normal 
to the plate) and rotations about the two orthogonal axes in the plane of the plate (see Fig. 21). 

FIG. 21.  Degrees o£ Freedom for the Bending Triangle and Quadrilateral 

The stiffness matrix of the bending elements can also be expanded to include the membrane degrees of 
freedom by adding rows and columns of zeros. When the membrane and bending behaviors are superimposed, 
the element provides stiffness against five degrees of freedom. The degree of freedom corresponding to 
rotation about the normal to the plate does not have stiffness, and this fact must be taken into account 
in order to avoid singularities in the solution of the load deflection equations. 

The bending behavior of a plate is governed by a fourth order partial differential equation with the 
transverse displacement as the dependent variable. The approximating polynomial for the bending element 
must reflect this fact. Some proposed polynomial approximations for the bending element are listed here. 

Triangular Plate Bending Element 

w(x,y) = a, + a^x + 
^3^ + a.x a^xy + 2 ^ a^y + ,x3 + (.X y + xy2) + a. (155) 

Rectangular Plate Bending Element 

w(x,y) = a^ + a^x +  ajy + a^x^ + a^y^ + a^xy + a^x^ + agy + a^x y + a^^xy + a^^x y + aj_2xy   ^^^g^ 

Similar or variations of these approximations were used by various investigators.  Most of these are 
incomplete polynomial approximations, and there is a certain arbitrariness and controversy. The incom- 
pleteness is due to the fact that the number of unknown polynomial coefficients has to be consistent with 
the number of displacement degrees of freedom assigned to the element. Once the displacement approxima- 
tions are defined, then the procedure for deriving the element stiffness matrices is similar to that 
outlined in Sections 4 and 5. 

7.   MASS PROPERTIES OF THE ELEMENTS FOR DYNAMIC ANALYSIS 

In dynamic analysis we need to consider the inertia forces in addition to the elastic forces on the 
structure. The inertia forces require mass properties. The element mass matrices can be generated by 
either a lumped mass or a consistent mass approach. The basis for a lumped mass approach is simply by 
inspection or a linear approximation at best. For example, the distributed mass of a rod can be lumped at 
each end by half its total mass. Similarly, for a triangular element a third of the mass can be lumped at 
each grid point and so on. The consistent mass approach on the other hand is derived logically from the 
kinetic energy of the system and the assumed displacement functions. The procedure is akin to the element 
stiffness matrices derivations. The term consistent refers to the formulation being consistent with the 
stiffness derivation. 
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The kinetic energy of a vibrating (time dependent motion) element can be written 

r =1 Jp/^ti.^^ (157) 
V 

Substituting the assumed displacement functions in terms of the shape functions and the discrete grid 
point displacements (see Eq. (70)) into Eq. (157) gives 

1 .t . (158) r. = ^ v.m.v. 
1  2 -i-i-i 

where the element mass matrix m. is given by 

~1 " /Pi*i4i'^^ (159) 
V 

The total kinetic energy in the structure is the sum of the kinetic energies of the elements 

m  t 
T =  I t±^it± (160) 

1=1 

Now a transformation from the local coordinate system to the global system gives 

T = i'^Mu (161) 

where u refers to the global displacement vector and M is the global mass matrix and is given by 

M =  y a.m.a. (162) 

The details of the transformation are similar to that indicated for the stiffness matrix in Section 4. 
Now the equations of dynamic analysis can be derived by substituting the kinetic energy and strain energy 
terms into Lagrange's equation. 

MU + C5 + Ku = P(t) ,_,^ 
(163) 

The first term represents the inertia forces (derived from the kinetic energy), the second term is from 
the dissipative forces, and the third term represents the elastic forces. The term on the right hand side 
of Eq. (153) represents the applied forces. Equation (163) is a second order matrix dynamic equation of 
the system, and it (or variations of) is the basis for predicting the dynamic behavior of mechanical 
systems. 

A few important points are worth noting before leaving this section. 

• Both the lumped mass approach and the consistent mass approach are acceptable for linear (first 
order) elements. 

• The lumped mass approach has a tendency to overestimate the mass and gives a lower bound 
approximation to the frequencies. 

• The consistent mass approach gives an upper bound approximation to the frequencies as in a 
Rayleigh-Ritz procedure. 

• For higher order isoparametric elements the lumped mass approach is, generally, not acceptable. 

• In the case of higher order elements concentrated non-structural masses must be handled 
judiciously. 

8.  STRUCTURAL ANALYSIS SOLUTIONS 

Finite element analysis problems will be explained here with the help of the analysis equations. 

1.  Static Analysis 

The static structural analysis is represented by the load deflection equations 

P = Ku (164) 

where P represents the applied load vector. P may consist of many independent load vectors representing 
independent flight conditions. The solution of the above equations is generally carried out in three 
steps. 

a. Decomposition: Involves factorization of the stiffness matrix 

5 = tSi*^ (165) 
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where L is a unit lower triangular matrix and D is a diagonal matrix, 

b. Forward Substitution;  Involves the solution of y from 

tl = E (166) 

°- Back Substitution; Involves the solution of u from the relation 

, t DL^ (167) 

The reason for performing a static structural analysis in three steps is that the procedure takes 
advantage of the sparseness and symmetric properties of the stiffness matrix. 

If there is more than one load vector, only the last two steps have to be repeated. That is, one 
decomposition and n FBS (Forward and Back Substitutions) are necessary, where n represents the number of 
load vectors. 

Once the load deflection equations are solved (for u), the element displacements can be determined by 
a simple coordinate transformation (see Section H).    From the element displacements the strains can be 
determined by the strain-displacement relations. The stresses are then determined by the stress-strain 
relations. 

2. Normal Modes Analysis 

The normal modes analysis represents the solution of a free vibration problem. The equations of 
free vibration analysis are given by 

MU + Ku = 0 (168) 

That is no damping or external forces. The solution of this harmonic equation can be written as 

u = y Cos(ft)t + 0) (159) 

Substitution of this solution into the dynamic equation gives 

or 

to MU = KU 

(K - io^M)U 

(170) 

(171) 

This equation belongs to a class of generalized eigenvalue problems with symmetric matrices. There are 
many methods for the solution of this problem. These are generally classified into transformation methods 
and tracking methods. The transformation methods find all the eigenvalues together. The tracking 
methods, on the other hand, find the desired eigenvalues and eigenvectors only, usually one at a time or 
in small groups. Some examples of these methods are listed here. 

Givens Method _ Transformation Method 

Determinant Method 
Inverse Power Method        - Tracking Methods 
Subspace Iteration 
Sturm-Sequence and Bisection 

A normal modes analysis is the basic step in most dynamic analyses of large systems (many degrees of 
freedom), because these systems can only be solved by reducing to a smaller number of equations. This 
reduction is most effective when the solution is represented by a small set of independent coordinates 
associated with the normal (natural) modes of the structure. 

3. Complex Eigenvalue Analysis 

The damped free vibration of a structure can be represented by 

Mu + Cu + Ku = 0 (172) 

This second order coupled differential equation can be represented in state space in the following form 

j = AX  ■ (173) 

where X and X are given by 

u u 
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and the plant matrix A is given by 

--T—,—0" (175) 

The solution of Eq. (173) can be written as 

A; = ^JS (176) 

This is a complex eigenvalue problem. The eigenvalues x  will contain real and imaginary parts 

"^ " ■^R "^ ^^I (177) 

The inverse power method and the upper Hessenberg method (similar to Givens) are some of the methods 
available for the solution of the complex eigenvalue problem. 

When the order of the system is very large, a complex eigenvalue analysis can be too expensive.  In 
such cases a modal reduction before a complex eigenvalue analysis is recommended. This modal reduction 
involves a real eigenvalue analysis (normal modes), and then the full system is expressed in terms of a 
reduced number of normal coordinates. 

REFERENCES 

[I] Boresi, A. P., "Elasticity in Engineering Mechanics," Prentice-Hall, Inc., 
Englewood Cliffs, N.J., 1965. 

[2]  Zienkiewicz, 0. C,, "The Finite Element Method in Engineering Science," McGraw Hill Co., 
London, 1971. 

[3]  Przemieniecki, J. S., "Theory of Matrix Structural Analysis," McGraw-Hill, New York, 1968. 

[t]  Cook, Robert D., "Concepts and Applications of Finite element Analysis," 
John Wiley & Sons, Inc., New York, 1981. 

[5]  Rao, S. S., "The Finite element Method in Engineering," Pergamon Press, Oxford, England, 1982. 

[6]  Irons, B. M., "Engineering Application of Numerical Integration in Stiffness Method," 
AIAA Journal, Vol. 4, 1966, pp. 2035-2037. 

[7]  Bathe, K. J. and Wilson, E. L., "Numerical Methods in Finite Element Analysis," 
Prentice-Hall, Inc., Englewood Cliffs, N.J., 1976. 

[8]  MacNeal, R. H., (Editor), "The NASTRAN Theoretical Manual, Levels 16 and 17," March 1976. 

[9]  Garvey, S. J., "The Quadrilateral Shear Panel," Aircraft Engineering, May 1951. 

[10] Venkayya, V. B. and Tischler, V. A., "ANALYZE - Analysis of Aerospace Structures with Membrane 
Elements," AFFDL-TR-78-170. 

[II] Venkayya, V. B. and Tischler, V. A., "OPTSTAT - A Computer Program for the Optimal Design of 
Structures Subjected to Static Loads," Technical Memorandum AFFDL-TM-FBR-79-67. 

[12] Sandhu, R. S., "A Survey of Failure Theories of Isotropic and Anisotropic Materials," 
September 1972, AFFDL-TR-72-71, pp. 19-22. 

[13] Tsai, S. W., "Strength Characteristics of Composite Materials," April 1965, NASA CR-221, 
pp. 5-8. 



4-38 

APPENDIX - TORSIONAL STIFFNESS OF LINE ELEMENTS 
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Computation of aeronautical structures (Romanian book) 
Calculul structurilor de aviatie 
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368 refs 22 In: RO (Romanian)  p.316 

The book presents both the classical and modern computational 
methods of aircraft structures. After a brief historical review of 
aviation, the general design and stress-strain problems are exposed. 
Aerodynamic principles, loads, shell structures, buckling, 
reliability, post-buckling behavior and plates and bars are covered in 
detail. A section on optimization problems ends the classical study. 
The modern section starts with the matrix methods, discusses the 
finite element method and concludes with a structural synthesis and 
optimization theory. The book is of interest to the academic world as 
well as to engineers and designers working in the aeronautical field. 
N.D. 

Application of computer-aided structural optimization in the design 
of aircraft components 

Anwendung  der  rechnergestuetzten  Strukturoptimierung bei 
Auslegung von Flugzeugbauteilen 

(AA)WELLEN, H. 
(AA)(Messerschmitt-Boelkow-Blohm GmbH, Bremen, West Germany) 
MBB-UT-21-84-0E  DGLR, Fachausschussitzung ueber Festigkeit 

Bauweisen, Neubiberg, West Germany, May 7, 1984, Paper. 7 p 
German. 840500 p. 7 refs 7 In: GM (German)  p.O 

der 

und 
In 

In the aerospace industry, the minimization of the structural weight 
is one of the vital requirements for an economic design of flight 
vehicles. A computer-aided structural optimization procedure can 
provide possibilities for performing a weight-optimal dimensioning of 
structural members in an automatized form, taking into account the 
employment of programmed, mathematical methods. It is possible to 
achieve the weight optimum under conditions involving time and cost 
advantages in comparison to the conventional design process. The Royal 
Aircraft Establishment (RAE) in England has developed the Structural 
Analysis and Redesign System (Stars) for a computer-aided structural 
optimization. Stars makes it possible to solve the involved 
mathematical problem with the aid of various optimization methods. A 
description is presented of the modular design of Stars and its 
operation. The practical application of Stars is discussed, taking 
into account the solution of design problems related to the Airbus A 
310. Attention is given to calculations based on a simplified 
finite-element model. 
G.R. 

Advances and trends in structures and dynamics; Proceedings of the 
Symposium, Washington, DC, October 22-25, 1984 

(AA)NOOR, A. K.; (AB)HAYDUK, R. 3. 
(AA)ED.; (AB)ED. 
(AB)(George Washington University, Hampton, VA) 
George Washington Univ., Hampton, Va.  (GV761922) 
Symposium sponsored by George Washington University and NASA. 

Computers and Structures (ISSN 0045-7949), vol. 20, no. 1-3, 1985, 668 
p. For individual items see A85-41102 to A85-41139. 850000 p. 668 
In: EN (English)  p.O 

Among the topics discussed are developments in structural 
engineering hardware and software, computation for fracture mechanics, 
trends in numerical analysis and parallel algorithms, mechanics of 
materials, advances in finite element methods, composite materials and 
structures, determinations of random motion and dynamic response, 
optimization theory, automotive tire modeling methods and contact 
problems, the damping and control of aircraft structures, and advanced 
structural applications. Specific topics covered include structural 
design expert systems, the evaluation of finite element system 
architectures, systolic arrays for finite element analyses, nonlinear 
finite element computations, hierarchical boundary elements, adaptive 
substructuring techniques in elastoplastic finite element analyses, 
automatic tracking of crack propagation, a theory of rate-dependent 
plasticity, the torsional stability of nonlinear eccentric structures, 
a computation method for fluid-structure interaction, the seismic 
analysis of three-dimensional soil-structure interaction, a stress 
analysis for a composite sandwich panel, toughness criterion 
identification for unidirectional composite laminates, the modeling of 
submerged cable dynamics, and damping synthesis for flexible 
spacecraft structures. 
D.C. 

The development of efficient models of the deformation of thin-wall 
structures 

0 postroenii effektivnykh modelei deformirovaniia tonkostennykh 
konstruktsii 

(AA)OBRAZTSOV, I. F.; (AB)NERUBAILO, B. V.; (AC)ZAITSEV, V. N.; 
(AD)IVANOV, lU. I. 

(AD)(Moskovskii Aviatsionnyi Institut, Moscow, USSR) 
Prikladnaia Mekhanika (ISSN 0032-8243), vol. 21, June 1985, p. 

61-67. In Russian.  850600 p. 7 refs 9 In: RU (Russian)  p.O 

Consideration is given 
mathematical thin-wall 
numerical and analytical 
through discretization 
of stressed states.  Th 
application of the theory 
approaches include the 
methods which are most 
states. 
L.T. 

to several approaches to developing efficient 
deformation models and the application of 
methods to determine the stress-strain states 
of thin-wall structures and through synthesis 
e study is carried out in the context of the 
of shells and plates to airframe design. The 
finite element method and some analytical 
reliable in determining the. stress-strain 

fp 



structures. Structural Dynamics, and Materials Conference, 26th, 
Orlando, FL, April 15-17, 1985, Technical Papers. Parts 14 2 

Conference sponsored by AIAA, ASME, ASCE, and AHS. New York, 
American Institute of Aeronautics and Astronautics, 1985, Pt. 1, 859 
p.; pt. 2, 762 p. For individual items see A85-30227 to A85-30405. 
850000 p. 1621 In: EN (English) Price of two parts, members, $120.; 
nonmembers, $150  p.O 

Among the topics discussed are sandwich core composite panels, 
graphite/epoxy composite plates, composite material crack growth 
behavior, damage tolerance analyses, computer-based structural system 
design and analysis methods, thermomechanical response prediction, 
laser irradiation of structures, the buckling behavior of structures, 
hybrid reinforcing fiber composite characteristics, large space 
structure antenna design and structural dynamics, multilevel 
structural optimizations, the fracture behavior of filament-wound 
structures, and finite element analysis methods. Also covered are 
metal matrix composite materials, the superplastic forming of high 
strength aluminum alloys, woven fabric-reinforced composite 
properties, structural shape optimization, thermal stresses in 
sandwich panels, airfoil stability and response determination, 
deployable space structures, space structure control actuators, the 
stability of flexible structures, structure-borne noise, damping 
synthesis for large space structures, and optimal vibration control. 
O.C. 

Introduction to aerospace structural analysis (Book) 
(AA)ALLEN, D. H.; (AB)HAISLER, W. E. 
(AB)(Texas A&M University, College Station, TX) 
New York, aohn Wiley and Sons, 1985, 518 p.  850000 p. 518 refs 

112 In: EN (English) $40  p.O 

Aerospace structures are defined as those whose usefulness 
significantly diminishes with increasing weight; among them may be 
counted not only aircraft and spacecraft structures, but those of 
bicycles, ships, and increasingly, those of automobiles. Safety 
factors are critical in the design of such minimum weight structures. 
Attention is given, in this comprehensive treatment of the subject for 
undergraduate students, to fundamental concepts of kinetics, stress, 
the uniaxial thermomechanical constitution of solids, the multiaxial 
constitution of elastic and thermoelastic solids, bending and shear in 
beams, torsion in thin walled closed sections, work and energy 
principles, the deformation and force analysis of aerospace 
structures, and finite element stiffness methods. 
O.C. 

Structural Analysis 
Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt, 

Brunswick (West Germany).  (D0696666)  Inst. fuer Strukturmechanik. 
DFVLR-MITT-84-21; ISSN-0176-7739 841100 p. 365 refs 0 Colloq. 

held at Brunswick, 4 Jun. 1987 Report will also be announced as 
translation (ESA-TT-917) In GERMAN and ENGLISH In: AA (Mixed) 
Avail.: NTIS HC A16/MF AOl; DFVLR, Cologne DM 95  p.3120 

Coupling of tension and torsion in rods; field consistency in finite 
element analysis; buckling and post-buckling behavior of shallow 
shells; optimization of axially compressed carbon fiber reinforced 
plastic cylinders; a substructure technique applied to fracture 
mechanics of composites; stress intensity factors as indicators of 
crack propagation in unidirectional laminates; and static aeroelastic 
phenomena of composite wings are discussed. For individual titles see 
N85-29314 through N85-29321. 

The application of computer aided structural optimization to the 
design of aircraft components 

ANWENDUNG DER RECHNERGESTUETZTEN STRUKTUROPTIMIERUNG BEI DER 
AUSLEGUNG VON FLUGZEUGBAUTEILEN 

(AA)WELLEN, H. 
Messerschmitt-Boelkow-Blohm G.m.b.H., Bremen (West Germany). ( 

MT603998) 
MBB-UT-21/84-0 In its Res. and Develop. Tech. and Sci. Repts. 1984 

p 61-68 (SEE N85-27724 16-81) 840000 p. 8 refs 0 Presented at 
DGLR-Fachausschusssitzung Festigkeit u. Bauweisen, Neubiberg, West 
Germany, 5 Oul. 1984 In: GM (German) Avail: Issuing Activity p. 
2873 

The Structural Analysis and Redesign System (STARS) program system 
was used for computer aided structural optimization of aircraft 
components. Practical use and results, present status, and planned 
extension of STARS are described. The application of computer aided 
structural optimization is demonstrated using the inner Airbus A-310 
traillng-edge flaps. Computer aided structural optimization offers the 
possibility of automatic weight-optimal dimensioning of carrying parts 
using programmed, mathematical methods. The weight optimum leads to 
time-and cost advantages. 
Author (ESA) 



Design of load-bearing aircraft structures 
Proektirovanie silovykh skhem aviatsionnykh konstruktsii 
(AA)KOMARQV, V. A. 
IN: Current problems in aviation science and technology (A85-20451 

07-01). Moscow, Izdatel'stvo Mashinostroenie, 1984, p. 114-129. In 
Russian.  840000 p. 16 refs 15 In: RU (Russian)  p.918 

future of aicraft structure design and strength 

A method for the computer-aided design of load- 
proposed which is based on the determination of 
structures using continuum models, followed by 
rational pathways of force transmission. Attei 
design characteristics of planar structures, 
arbitrary three-dimensional elastic systems, 
detailed finite-element methods is considered as 
in the design of the load-bearing structures. 
B..1. 

bearing structures is 
theoretically optimal 
a graphic analysis of 
ntion is given to the 
wings, fuselages, and 
The development of 

the culminating stage 

State-of-art and 
analysis 

(AA)YHUANG, Y.; (AB)ZHU, D. 
(AB)(Northwestern Polytechnical University, Xian, Shaanxi, People's 

Republic of China) 
Acta Aeronautica et Astronautica Sinica, vol. 5, June 1984, p. 

103-111. In Chinese, with abstract in English. 840600 p. 9 refs 10 
In: CH (Chinese)  p.O 

The state of the art and future prospects of design and strength 
analysis of aircraft structures are briefly reviewed. The subjects 
discussed include: modern procedures in aircraft structure design, the 
finite element method and structural analysis programming, mode active 
control technology and analytical method, the application of fatigue 
and fracture, advanced composite structures, serious environmental 
conditions, and reliability analysis for structures. 
Author 

Sonic fatigue design method for the response of CFRP stiffened-skin 
panels 

(AA)HOLEHOUSE, I. 
(AA)(Rohr Industries, Inc., Chula Vista, CA) 
IN: International Conference on Recent Advances in Structural 

Dynamics, 2nd, Southampton, England, April 9-13, 1984, Proceedings. 
Volume 2 (A85-12426 02-39). Southampton, England, University of 
Southampton, 1984, p. 787-798. 840000 p. 12 refs 7 In: EN 
(English)  p.O 

A semi-empirical method for estimating the structural response of 
carbon fiber-reinforced plastic (CERP) stiffened-skin panels 
experiencing random acoustic loading is presented. The technique was 
developed using experimental and numerical studies. CFRP skin stringer 
panels were exposed to high intensity noise in a progressive wave tube 
and finite element analyses characterized the static strains and 
natural frequencies. Stepwise regression analyses established the 
empirical relationships between the strain data and panel curvature 
and aspect ratio. Design equations were selected from the regression 
equations which most accurately predicted the data. The rms strain and 
acoustic levels, but not the spectra, were usable for design analyses, 
yielding strain level accuracies of 9 percent. 
M.S.K. 

Predicting structural dynamic behavior using a combined 
experimental/analytical model (for helicopter design) 

(AA)SMITH, M. R.; (AB)WEI, F.-S. 
(AA)(Bell Helicopter Textron, Inc., Fort Worth, TX); (AB)(Bell 

Helicopter Textron, Inc., Fort Worth, TX; Kaman Aerospace Corp., 
Bloomfield, CT) 

N00019-82-G-0009 IN: American Helicopter Society, Annual Forum, 
39th, St. Louis, MO, May 9-11, 1983, Proceedings (A84-46326 22-01). 
Alexandria, VA, American Helicopter Society, 1984, p. 648-655.  840000 

p. 8 refs 11 In: EN (English)  p.3191 

A procedure by means of which to couple an analytically developed 
helicopter finite element model with experimentally derived structural 
parameters of wing-mounted store components that can predict overall 
aircraft system dynamic behavior has been developed. The procedure 
utilizes an incomplete number of measured mode shapes and modal 
frequencies to obtain dynamically equivalent stiffness and mass 
matrices for each externally mounted component. To verify the 
technique, stiffness and mass matrices are developed for the LAU-68 
and Hellfire missile systems, coupled with a finite element model of 
the U.S. Navy AH-IJ helicopter. The results obtained from this method 
correlate well with actual vibration test data of the total 
helicopter/store system. This method is valuable for field deployment 
of a new externally mounted store system which requires integration 
with a large matrix of existing store configurations. Utilization of 
this technique should minimize costly flight testing and provide a 
method to experimentally obtain a mathematical model for highly 
nonlinear, complex structures. 
Author tx) 

I 



Computerized methods for analysis and design of aircraft structures 
(AA)FREDRIKSSON, B. 
(AA)(Saab-5cania, AB, Linkoping, Sweden) 
IN: International Council of the Aeronautical Sciences, Congress, 

14th, Toulouse, France, September 9-14, 1984, Proceedings. Volume 2 
(A84-44926 22-01). New York, American Institute of Aeronautics and 
Astronautics, 1984, p. 815-827. Research supported by the Forsvaret 
Materielverk.  840000 p. 13 refs 30 In: EN (English)  p.3187 

The developments made to utilize computerized methods for analysis 
and design of aircraft structures are described. The paper discusses 
the integration of data and methods between geometry, aerodynamics, 
loads, structures, etc., to form a computer aided engineering 
environment. The paper is concentrating on structural analysis and 
sizing. Methods to rationalize the finite element internal loads 
calculations and to increase the quality of the work is discussed. 
Methods have been developed to generate local spectra from the finite 
element result for fatigue and fracture analysis. The rationalization 
and quality effect of this is discussed. New design criteria and 
requirements of high performance, light weight and economy implies 
introduction of new methods for analysis. The paper discusses the 
developments made in some advanced topics like combined contact and 
crack problems and structural optimization. The combined use of mini- 
and supercomputers as well as the twofold effect of rationalization 
and quality by using supercomputers are discussed. 
Author 

Structural optimization of an aircraft design with consideration of 
aeroelastic flutter stability 

Strukturelle Optimierung eines Flugzeugentwurfs unter 
Beruecksichtigung aeroelastischer Flatterstabilitaetsaspekte 

(AA)FREYMANN, R. 
(AA)(Deutsche Forschungs- und Versuchsanstalt fuer Luft- und 

Raumfahrt, Institut fuer Aeroelastik, Goettingen, West Germany) 
Zeitschrift fuer Flugwissenschaften und Weltraumforschung (ISSN 

0342-068X), vol. 8, May-June 1984, p. 208-217. In German. 840600 p. 
10 refs 8 In: GM (German)  p.2721 

A computational algorithm for the minimum-weight optimization of 
aircraft structures is presented and demonstrated. The method takes 
both strength-determined scaling criteria and the flutter stability 
into account and makes use of modal characteristics derived from a 
reduced finite-element model of the structure. The results of a sample 
optimization on a cantilevered large-aspect-ratio wing model are 
presented in tables and graphs, and a flow chart of the algorithm is 
provided. 
T.K, 

I 

Possibilities of the SOFEM system from the viewpoint of data 
generation 
Moznosti systemu SOFEM z hlediska generace dat 
(AA)MECIAR, M. 
Zpravodaj VZLU  (ISSN 0044-5355), no. 2, 1984, p. 

840000 p. 6 In: CZ (Czech)  p.2936 
87-92. In Czech. 

The paper examines input-data preparation for structural-strength 
analysis using the FEM-based SOFEM system. Emphasis is placed on data 
generation with regard to geometric and mechanical characteristics, 
boundary conditions, and the loading of idealized structures. The 
possibility of data generation is demonstrated on simple examples. 
B.J. 

Studies  of noise transmission in advanced composite material 
structures 

(AA)ROUSSOS, L. A.; (AB)MCGARY, M. 
National Aeronautics and Space 

Center, Hampton, Va.  (ND210491) 
In its ACEE Composite Struct. 

20-24) 
p.3146 

C; (AC)POWELt, C. A. 
Administration.  Langley Research 

Technol.  p 161-178 (SEE N84-29969 
830800  p. 19 In: EN (English)  Avail.: NTIS HC A09/MF AOl 

Noise characteristics of advanced composite material fuselages were 
discussed from the standpoints of applicable research programs and 
noise transmission theory. Experimental verification of the theory was 
also included. 
R.S.F. 



NASTRAN analysis of nuclear effects on helicopter transparencies 
(AA)LIN, P. T.; (AB)aORGENSON, J. S. 
Goodyear Aerospace Corp., Litchfield Park, Ariz. (G2690950) 
AD-P003234  In Dayton Univ. Conf. on Aerospace Transparent Mater, 

and Enclosures p 1083-1095 (SEE N84-26596 17-01) 831200 p. 13 In: 
EN (English) Avail.: NTIS HC A08/MF AOl  p.2597 

This paper deals with the linear and geometric nonlinear analysis of 
the gunner's window on the AH-IS Cobra helicopter in response to a 
nuclear overpressure environment. The work was sponsored by the 
Applied Technology Laboratory, U.S. Army Research and Technology 
Laboratories (AVRADCOM), Fort Eustis, Virginia. Both monolithic 
stretched acrylic and multilayered transparency configurations are 
considered in this report. Comparison analyses using both the NASTRAN 
finite element program and classical Timoshenko plate theory show good 
agreement. Comparison of the analytical results with experimental 
observations made by other sources indicates that the geometric 
nonlinear mathematical models, rather than the linear models, are the 
more realistic and appropriate representation of transparency response 
to nuclear overpressure loading in the range considered. It is shown 
that the classical analysis of a simplified equivalent configuration 
serves as a useful checkpoint, while finite element programs, such as 
MSC/NASTRAN, are the necessary analytical tools to examine the 
complicated configurations and loading conditions. 
GRA 

Current problems and progress in transparency impact analysis 
(AA)BROCKMAN, R. A. 
Dayton Univ., Ohio.  (DE333333) 
AD-P003233 In its Conf. on Aerospace Transparent Mater, and 

Enclosures p 1057-1082 (SEE N84-26596 17-01) 831200 p. 26 In: EN 
(English) Avail.: NTIS HC A08/MF AOl  p.2597 

The design of aircraft transparencies for impact resistance poses a 
number of difficult problems for the structural analyst. Prominent 
among these are the accurate modeling of the transparency and its 
dynamic response, characterization of the construction materials, and 
evaluation of the applied loadings resulting from soft-body impact. 
This paper reviews current practices for mathematical modeling of 
transparency impacts, discusses problem areas in current analysis 
capabilities, and summarizes some current research on methods for 
impact simulation. 
GRA 

Parametric studies of the T-38 student windshield using the finite 
element of code MAGNA (Materially and Geometrically Nonlin&ar 
Analysis) 

(AA)NASH, R. A. 
Dayton Univ., Ohio.  (DE333333) 
AD-P003232 F33615-76-C-3103; F33615-80-C-3401 In its Conf. on 

Aerospace Transparent Mater, and Enclosures p lOAO-1055 (SEE 
N84-26596 17-01) 831200 p. 16 In: EN (English) Avail.: NTIS HC 
A08/MF AOl  p.2597 

The parametric studies examine the effect of structural variations 
on the nonlinear dynamic response of the T-38 student 
windshield/support structure system to bird impact. The studies were 
conducted using the MAGNA (Materially and Geometrically Nonlinear 
Analysis) finite element computer program. Both static and dynamic 
analyses were performed, examining the effects of changes to the 
transparency stiffness and intensity of the applied load, both coupled 
and uncoupled. Significant results of the finite element analysis 
include transparency deflection peak load versus transparency 
stiffness, and resultant force plots along the aft arch. A discussion 
of the application of the finite element method to the birdstrike 
problem is also presented. 
GRA 

Simulation of T-38 aircraft student canopy response to cockpit 
pressure and thermal loads using MAGNA (Materially and Geometrically 
Nonlinear Analysis) 

(AA)MCCARTY, R. E.; (AB)SMITH, R. A. 
Air Force Wright Aeronautical Labs., Wright-Patterson AFB, Ohio. ( 

A3840964) 
AD-P003231 In Dayton Univ. Conf. on Aerospace Transparent Mater, 

and Enclosures p 1009-1039 (SEE N84-26596 17-01) 831200 p. 31 In: 
EN (English) Avail.: NTIS HC A08/MF AOl  p.2597 

The linear and nonlinear static response to cockpit pressure and 
(cold) thermal loads of the forward canopy for the T-38 aircraft has 
been predicted using the MAGNA (Materially and Geometrically Nonlinear 
Analysis) finite element computer program. The results obtained are 
compared to those of earlier analyses and full scale tests. It is 
concluded that the current canopy design when properly rigged can 
withstand more than 20 psig pressure, that thermal loads are more 
critical than cockpit pressure loads, and that providing more 
attachment fixity at both forward and aft arches would relieve stress 
concentrations which occur at the canopy corners. 
GRA 



Analysis of symmetric reinforcement of quasi-isotropic 
graphite-epoxy plates with a circular cutout under uniaxial tensile 
loading  / M.S. Thesis 

(AA)PICKETT, D. H.; (AB)SULLIVAN, P. 
Naval Postgraduate School, Monterey, Calif.  (NS368219) 
AD-A139998 831200 p. 112 In: EN (English) Avail.: NTIS HC 

A06/MF AOl  p.2285 

An experimental and computational analysis was made of the strain 
field around a reinforced circular hole in four HMF330/34 
graphite/epoxy (G/Ep) panels under uniaxial tensile loading. The basic 
panel was a 10.0 in. wide, 26.0 in. long, eight ply, quasi-isotropic 
(0/+45/90)s cloth laminate. Each panel was reinforced during 
manufacture by concurring two circular plies of the same material to 
each side of the panel. A circular one inch hole was drilled 
concentrically through the laminate to provide a stress concentration. 
The symmetric reinforcement reported here provided an improvement of 
29 to AOS in ultimate strength over a similar but unreinforced panel 
under the same loading conditions. Test results indicated that panel 
failure would occur when the fibers in the dominating orientation were 
strained approximately 1%. There appeared to be a significant load 
transfer within the laminate at high strains from the failed fibers. A 
finite element analysis was made and found in excellent agreement with 
experimental results. 
GRA 

Damped structure design using finite element analysis 
(AA)KLUESENER, M. F.; (AB)DRAKE, M. L. 
Dayton Univ., Ohio.  (DE333333) 
In Shock and Vibration Inform. Center The Shock and Vibration 

Bull., No. 52., Part 5 p 1-12 (SEE N83-30740 19-31) 820500 p. 12 
refs 0 In: EN (English) Avail.: NTIS HC A08/MF AOl  p.3105 

t 

The performance requirements and the 
engines and aircraft increase the need 
fatigue (HCF) control. The methodology 
analysis to evaluate viscoelastic damping 
is presented. Steps for analyzing pass 
examined. Design criteria used to evaluati 
as well as two methods of calculating the 
discussed. The results from analyses of a 
blade are included. 
Author 

life cycle costs for jet 
for functional high cycle 

of using finite element 
treatments for HCF control 

ive damping treatments are 
e the damping applications, 
structural loss factor are 

stiffened panel and turbine 

Residual strength predictions for ballistically damaged aircraft 
(AA)CZARNECKI, G. :. 
(AA)(USAF, Wright-Patterson AFB, OH) 
IN: Annual Mini-Symposium on Aerospace Science and Technology, 9th, 

Wright-Patterson AFB, OH, March 22, 1983, Proceedings (A83-42526 
20-01). New York, American Institute of Aeronautics and Astronautics, 
1983, p. 5-2-1 to 5-2-3.  830000 p. 3 In: EN (English)  p.3001 

In an effort to predict the load carrying capability of 
ballistically damaged aircraft wings, three MAGNA finite element 
models have been developed. Wings modeled were the F-4B, and F-15. An 
A-7 composite wing model is presently under construction. To validate 
computer predictions, each of the four wings were loaded and 
ballistically damaged with a high explosive incendiary (HEI) round. 
Strain gage and deflection data were recorded in the pre- and 
post-damage conditions. Ultimately, efforts will concentrate toward 
utilizing this computer code (or a derivation) as a structural design 
tool which takes survivability/vulnerability aspects into account. 
Author 

Airworthiness considerations 
(AA)HOSKIN, B. C. 
Aeronautical Research Labs., Melbourne (Australia).  (AF441057) 
In its Lectures on Composite Mater, for Aircraft Struct, p 253-262 

(SEE N83-30523 19-24) 821000 p. 10 refs 0 In: EN (English) 
Avail.: NTIS HC A12/MF AOl  p.3076 

The use of composite materials raises some problems which are 
different to those for metal aircraft structures. These problems, in 
turn, raise questions about specific airworthiness requirements for 
composite aircraft structures. At this state, few such formal specific 
requirements exist. As an example, consider the matter of the effect 
of the moisture/temperature environment on structural performance. 
Although the US Military Standard on Aircraft Structural Integrity 
states that the standard applies to metallic and non-metallic 
structures, and although the US Military Handbook details general 
design procedures for composite structures, neither document specifies 
a procedure for allowing for environmental effects in the structural 
integrity program, including the static and fatigue tests on full 
scale articles. Airworthiness requirements for UK military aircraft 
containing composite structure only exist in draft form. 
Author 



stress intensity factors for two cracks emanating from two holes and 
approaching each other 

(AA)KUO, A. S.; (AB)SAUL, S.; (AC)LEVY, M. 
(AC)(Fairchild Republic Co., Farmingdale, NY) 
Engineering Fracture Mechanics, vol. 17, no. 3, 1983, p. 281-288. 

830000 p. 8 refs 8 In: EN (English)  p.496 

With reference to the damage tolerance design of aiccraft 
structures, a numerical method has been developed for examining the 
interaction between cracks at adjacent holes. A collapsed 1/4 position 
quadratic quadrilateral isoparametric finite element is used to solve 
stress intensity factors. The finite element program, called CRACK, 
calculates the element stiffness matrix with double precision while 
other calculations are made with single precision. The program can be 
run in either batch-mode or interactive-mode. 
s.c.s. 

American Helicopter Society, Annual Forum, 38th, Anaheim, CA, May 
4-7, 1982, Proceedings 

Washington, DC, American Helicopter Society, 1982. 537 p. (For 
individual items see A82-40506 to A82-40556) 820000 p. 537 In: EN 
(English)  p.3133 

Among the topics discussed are the aerodynamics, structural 
dynamics, propulsion, design, avionics, product assurance, structures 
and materials, testing, and acoustics of helicopters. The papers 
presented cover optimum airloads of rotors in hover and forward 
flight, the evaluation of vertical drag and ground effect, helicopter 
vibration reduction by rotor blade modal shaping, the finite element 
analysis of bearingless rotor blade aeroelasticity, adaptive fuel 
controls, digital full authority engine controls, helicopter 
autorotation assist concepts, and the conceptual design of an 
integrated cockpit. Also presented are papers on the demonstration of 
radar reflector detection, avionics systems for helicopter 
integration, the adaptation of pultrusion to the manufacture of 
helicopter components, composite main rotor blades, optimum structural 
design, the in-plane shear testing of thin panels, error minimization 
in ground vibration testing, and the prediction of helicopter rotor 
discrete frequency noise. 
O.C. 

Optimization of aircraft structures 
Optimisation des structures d'avion 
(AA)PETIAU, C; (AB)LECINA, G. 
(AB)(Avions Marcel Dassault-Breguet Aviation, Saint-Cloud, 

Hauts-de-Seine, France) 
Journal de Mecanique Theorique et Appliquee, vol. 1, no. 2, 1982, p. 

291-309.  In French.  820000 p. 19 refs 7 In: FR (French)  p.189 

A finite element method for weight minimization in the design of 
aircraft structures is presented. The economic utilization of the 
method depended on developing an iterative process which was 
cost-effective. The code that resulted, ELFINI, regrouped, around 
finite element cores, large branching analyses of the aeronautical 
structures. Algorithms were devised for linear and nonlinear static 
constraints, static aeroelasticity, load management, dynamic flutter 
damping, with transitory and forced response, heat transfer, 
isothermal mapping, and crack propagation. Partial derivatives are 
calculated for constraints on the optimization, limits to the flutter 
speed are defined, and the estremum of transitory response is derived. 
Two methods for explicit optimization are introduced, and it is noted 
that final changes, based on small variations in the basic parameters, 
can be investigated with interactive graphics at the CAD station. An 
example is presented in terms of designs of a carbon fiber empennage 
and a delta wing. 
M.S.K. 

Composite materials: Mechanics, mechanical properties and 
fabrication; Proceedings of the Japan-U.S. Conference, Tokyo, Japan, 
January 12-14, 1981 

(AA)KAWATA, K.; (AB)AKASAKA, T. 
(AA)(ED.) 
(AA)(Tokyo, University, Tokyo, Japan); (AB)(Chuo University, 

Hachioji, Tokyo, Japan) 
Conference sponsored by the Japan Society for Composite Materials 

and Nihon Itagarasu Zairyokogaku Joseikai. Barking, Essex, England, 
Applied Science Publishers, 1982. 575 p (For individual items see 
A82-39852 to A82-39897) 820000 p. 575 In: EN (English) $68 p. 
3054 

This conference on composite materials opens with consideration of 
such topics in dynamic behavior and wave propagation as the impact 
resistance and dynamic analysis of composites, wave propagation in a 
composite cylinder, and transient wave propagation in a viscoelastic 
laminate. It then proceeds to stress analysis and mechanical 
properties, including the equivalent inclusion method, elastic 
constants and internal friction in composites, finite element method 
and photoelasticity analyses, fiber orientation, and damping 
properties. Also covered are composite fatigue and fracture 
properties, viscoelasticity, elastoplastic fracture toughness, metal 
matrix composites, ceramic and rubber composites, thermal and 
environmental problems, the strength of composite structural elements, 
composite structure design methods and prospective composite 
applications in aircraft structures, and educational methods for 
composite materials engineering. 
O.C. I 



static and aeroelastic optimization of aircraft 
Optimisation statique et aeroelastique des avions 
(AA)THOMAS, 3.   M. 
(AA)(Societe Nationale Industrielle Aerospatiale, Toulouse, France) 
Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt, 

International Symposium on Aeroelasticity, Nuremberg, West Germany, 
Oct.  5-7, 1981, Paper. 9 p. In French.  811000 p. 9 In: FR (French) 

p.2847 

Techniques for the finite element modeling of the static and 
aeroelastic stresses on an aircraft are described. The methods are 
intended to serve to define sustainable loads in aircraft structures 
which are built with minimized weight. Attention is focussed on the 
components of the ASELF program, which comprises analyses of linear 
and nonlinear statics, crack propagation, thermal effects and static 
and dynamic aeroelastic characteristics. Partial derivatives are 
obtained for the displacements, elastic, principal, and equivalent 
stresses, the rupture criteria, panel buckling, and internal 
interactions between groups of elements. Constraints are placed on the 
optimization through formulation of the displacements, a rigidity 
matrix, and a determination of the external stresses. An optimization 
example is provided for a composite sheets bordering openings in the 
aircraft or in the empennage using 1952 degrees of freedom with 3684 
elements. 
M.S.K. 

Structural system identification technology verification / Final 
Report 

(AA)GIANSANTE, N.; (AB)BERMAN, A.; (AC)FLANNELLY, W. G.; (AD)NAGY, 
E. 3. 

Kaman Aerospace Corp., Bloomfield, Conn.  (KC616275) A2024546 
AD-A109181; R-1631; USAAVRADC0M-TR-81-D-28 DAAK51-78-C-0017; DA 

PR03. 1L1-62209-AH-76 Army Research and Technology Labs. Ft. Eustis, 
Va. 811100 p. 218 refs 0 In: EN (English) Avail.: NTIS HC AlO/MF 
AOl  p.1376 

Structural system identification is the method of obtaining 
structural and dynamic mathematical models and improving existing 
mathematical models using ground vibration test data. The purpose of 
the subject program was to perform experimental, development, and 
research work to verify the concepts of structural system 
identification technology. To accomplish this, system identification 
techniques were applied to a U. S. Army AH-IG helicopter fuselage to 
create a mathematical model from ground vibration test data, to 
improve a reduced model of an existing NASTRAN model of the AH-IG 
using shake test data, and to test the effectiveness of these new 
mathematical models in predicting the effects of stiffness and mass 
changes to the airframe. The results of the program indicate that 
system identification is a viable and cost-effective technique for 
developing new models and for improving existing finite-element models 
of an airframe using ground vibration test data. 
Author (GRA) 

D3 

Structures, Structural Dynamics and Materials Conference, 23rd, New 
Orleans, LA, May 10-12, 1982, Collection of Technical Papers. Part 1 - 
Structures and materials. Part 2 - Structural dynamics and design 
engineering 

Conference sponsored by AIAA, ASME, ASCE, and AHS. New York, 
American Institute of Aeronautics and Astronautics, 1982. Pt. 1, 532 
p.; pt. 2, 645 p. (For individual items see A82-30077 to A82-30192) 
820000 p. 1177 In: EN (English) PRICE OF TWO PARTS, MEMBERS, $100.; 
NONMEMBERS, $125  p.2105 

An integration scheme to determine the dynamic response of a launch 
vehicle with several payloads is considered along with aeroelastic 
characteristics of the Space Shuttle external tank cable trays, the 
structural design of integral tankage for advanced space 
transportation systems, and optimum damping locations for structural 
vibration control. Attention is given to a damage induced aeroelastic 
failure mode involving combination and parametric resonant 
instabilities of lifting surfaces, passive damping mechanisms in large 
space structures, an automated technique for improving modal 
test/analysis correlation, pressure measurements on twin vertical 
tails in buffeting flow, and a wind-tunnel study of the aerodynamic 
characteristics of a slotted versus smooth-skin supercritical wing. 
Other topics explored are related to the active control of aeroelastic 
divergence, stress constraints in optimality criteria design, and 
damage tolerant design using collapse techniques. 
G.R. 

Stiffness degradation of impact damaged structure 
Advisory Group for Aerospace Research and Development, 

Neuilly-Sur-Seine (France).  (AD455458) 
In its Design Manual for Impact Damage Tolerant Aircraft Struct, p 

159-160 (SEE N82-17160 08-05) 811000 p. 2 In: EN (English) Avail.: 
NTIS HC All/MF AOl  p.1029 

Stiffness reduction in impact damaged structural elements can be 
important from two standpoints. The first is the alteration of load 
distribution within the structure, potentially causing overloading and 
failure of undamaged elements. The second area of potential concern is 
the residual stiffness of major structural components, since stiffness 
degradation may lead to instability and control inadequacy. These two 
topics are discussed, however, there are few verified analysis methods 
for predicting stiffness degradation associated with ballistic damage. 
Both of these stiffness degradation effects, but particularly the 
latter, become increasingly significant as the extent of the inflicted 
damage becomes larger. Stiffness degradation may well be a problem for 
HE projectile impacts, but it is generally insignificant with small 
arms. 
T.M. 



Lighter-Than-Air Systems Technology Conference, Annapolis, MD, July 
8-10, 1981, Collection of Technical Papers 

Conference sponsored by the American Institute of Aeronautics and 
Astronautics. New York, American Institute of Aeronautics and 
Astronautics, Inc., 1981. 160 p. (For individual items see A81-38527 
to A81-38545) 810000 p. 160 In: EN (English) MEMBERS, $25; 
NONMEMBERS, $35  p.2871 

Among the topics discussed are: regional development of LTA systems, 
such as in Latin America and Great Britain; the design and development 
of a thermal airship, and a status report on the Solar Powered 
Stratospheric Platform (SPSP); and aerodynamic studies on laminar 
flow, heavy lift airship dynamics, estimation techniques, 
survivability in atmospheric turbulence, and predictive steering 
control. Also covered are such structural design topics as 
rigid-pressure airships, tethered aerostat dynamics, bulkheads, and 
finite element analysis of flexible aerostat structures. 
O.C. 

Structural flight loads simulation capability. Volume 2: 
Structural analysis computer program user's manual / final Report, 
Aug. 1977 - Sep. 1980 

(AA)BRUNER, 
(AD)HECHT, M. 
Dayton Univ, 
AD-A096594; 

-3135  AFWAL 
EN (English) 

P.;  (AC)GEBARA,  J.  G.; T.  S.;  (AB)BOUCHARD,  M. 
a.; (AE)BOGNER, F. K. 
, Ohio.  (DE333333) Aerospace Mechanics Div.  Aa840964 
UDR-TR-80-73-V0L-2; AFWAL-TR-80-3118-V0L-2 F33615-76-C- 
Wright-Patterson AFB, Ohio 801100 p. 358 refs 0 In: 

Avail.: NTIS HC A16/MF AOl  p.1718 

A complete system for the modeling, analysis and post-analysis of 
wing structures utilizing finite elements in simulated flight loads 
testing has been developed. The preprocessor incorporated the MAGNA 
element types 3, 4 and 5 (2-D membrane, truss and thin shells) into 
three predefined wing class models and allows for the conversion of 
existing wing models to be analyzed by MAGNA. MAGNA is a very powerful 
and flexible material and geometrical nonlinear analysis program 
capable of solving a wide variety of finite element problems. Two 
postprocessors are coupled to the modeling and analysis of the wing 
structures to provide model geometry, stress or strain contour or 
relief displacement plots of the model and analysis results. 
GRA 

Sonic fatigue design techniques for graphite-epoxy stiffened-skin 
panels 

(AA)HOLEHOUSE, I. 
(AA)(Rohr Industries, Inc., Chula Vista, Calif.) 
AIAA 81-0633 In: Structures, Structural Dynamics and Materials 

Conference, 22nd, Atlanta, Ga., April 6-8, 1981, and AIAA Dynamics 
Specialists Conference, Atlanta, Ga., April 9, 10, 1981, Technical 
Papers. Part 2. (A81-29428 12-01) New York, American Institute of 
Aeronautics and Astronautics, Inc., 1981, p. 574-579. USAF-sponsored 
research. 810000 p. 6 refs 9 In: EN (English)  p.2023 

A combined analytical and experimental program was conducted in 
order to develop a semi-empirical sonic fatigue design method for 
curved and flat graphite-epoxy skin-stringer panels. A range of 
multi-bay panels was subjected to high intensity noise environments in 
a progressive-wave tube. Shaker tests were also performed in order to 
provide additional random fatigue data. Finite-element analyses were 
carried out on the test panel designs, generating static strains and 
frequencies. Multiple stepwise regression analysis was used to develop 
the sonic fatigue design method. Design equations and a nomograph are 
presented. Comparisons of sonic fatigue resistance between graphite 
and aluminum panels were also carried out. The design method developed 
is presented as a self-contained section and is suitable for practical 
design use. 
(Author) 

Engineering application of the finite element method; Proceedings of 
the International Conference, Hovik, Norway, May 9-11, 1979 

(AA)BOMAN, P. 
(AA)(ED.) 
(AA)(Computas A/S, Hovik, Norway) 
Conference sponsored by the Norske Veritas. Computers and 

Structures, vol. 12, Oct. 1980. 311 p. (For individual items see 
A81-16298 to A81-16309) 801000 p. 311 In: EN (English)  p.558 

The conference covered topics including finit 
hull-deckhouse interaction, modeling of finite e 
ship vibration,  a spectral method for estimating 
reactor  containment,  and linear and nonlinear 
thermal analysis of a radial gas turbine wheel. 
fluid-structure interaction, calculation of critical 
an aircraft  in subsonic  flow,  algorithms for noi 
problems,  stability analysis of cylindrical shells 
of adaptive mesh refinement. 
A.T. 
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structural optimization with static and aeroelastic constraints 
(AA)MATHIAS, D.; (AB)ROEHRLE, H.; (AC)ARTMANN, 3. 
Dornier-Werke G.m.b.H., Friedrichshafen (West Germany). (D0425275) 

Structural Dynamics Dept. 
In AGARD The Use of Computers as a Design Tool 11 p (SEE N80-21243 

12-01) 800100 p. 11 refs 0 In: EN (English) Avail.: NTIS HC 
A19/MF AOl  p.1512 

An optimization program is presented which is based on the finite 
element method and, within the actual optimization step, works 
according to the gradient method. The DYNOPT computer program was 
applied to a clamped straight wing. The wing was statically loaded and 
had eccentric masses and rotational inertias representing rudders and 
actuators. These eccentricities ensured the coupling between the 
bending and torsional deformations. The minimum weight of the 
structure was obtained after 15 iteraction steps while all boundary 
conditions were observed. 
R.C.T. 

Optimal design of wing structures with substructuring 
(AA)GOVIL, A. K.; (AB)ARORA, J. S.; (AC)HAUG, E. 3. 
(AA)(Iowa, University, Iowa City, Iowa; M.N.R. Engineering College, 

Allahabad, India); (AC)(Iowa, University, Iowa City, Iowa) 
Computers and Structures, vol. 10, Dec. 1979, p. 899-910. 

Army-supported research. 791200 p. 12 refs 17 In: EN (English) 
p.4544 

An iterative method for optimal design of large scale structures 
that incorporates the concept of substructuring is extensively applied 
to wing-type structures to demonstrate its generality, effectiveness 
and efficiency. Optimum designs for several wing-type structures are 
obtained and compared with results available in the literature. It is 
shown that considerable efficiencies can be achieved by integration of 
the substructuring concept into a structural optimization algorithm. 
(Author) 

o 

Application of finite element analysis to derivation of structural 
weight 

(AA)HUTTON, 3.   G.; (AB)RICHMOND, L. D. 
(AB)(Boeing Aerospace Co., Seattle, Wash.) 
SAWE PAPER 1271 Society of Allied Weight Engineers, Annual 

Conference, 38th, New York, N.Y., May 7-9, 1979,  29 p.  790500 p. 29 
refs 7 In: EN (English)  p.1027 

The paper presents application of finite element analysis to derive 
methodology for estimation of structural system weight. The study 
developed factoring logic and its testing, and the documentation of 
interdisciplinary interaction for model development. The numerical 
factors were composed of subfactors that accounted for modeling 
technique, construction method, material, and installation details. 
The F-15A was used as the known structural system for testing of the 
weight factor logic; a finite element model was developed for the wing 
box, and a simplified beam body and horizontal tail were included for 
simulation of the wing support and to provide balanced aircraft loads. 
The correlation of the factored finite element and as-built weights 
was good for the cover panels; the total cover weight compared within 
35o with a plus or minus 10% spread among the individual panels. 
A.T. 

Wing center section optimization with stress and local instability 
constraints 

(AA)ISREB, M. 
(AA)(Riyadh, University, Riyadh, Saudi Arabia) 
Computers and Structures, vol. 10, Dec. 1979, p. 855-861. 791200 

p. 7 refs 13 In: EN (English)  p.4543 

This paper considers the optimization of bar/shear 
panel/unidirectionally stiffened panel idealization finite element 
model of the wing center section of an airplane. The finite element 
model is synthesized with respect to stress and local instability 
constraints. The paper introduces more realistic and flexible 
synthesis approach over the previous published work. 
(Author) 



Application of numerical methods to heat transfer and thermal stress 
analysis of aerospace vehicles 

(AA)WIETING, A. R. 
(AA)(NASA, Langley Research Center, Hampton, Va.) 
National Aeronautics and Space Administration. Langley Research 

Center, Hampton, Va.  (ND210491) 
International Conference on Numerical Methods in Thermal Problems, 

Swansea, Wales, July 2-6, 1979, Paper. 11 p. 790700 p. 11 refs 9 
In: EN (English)  p.4351 

The paper describes a thermal-structural 
fuel-injection strut for a hydrogen-cool 
supersonic transport, utilizing fin 
Applications of finite-element and finit 
thermal-structural design-analysis of space 
are discussed. The interaction between 
analyses has led to development of finite-e 
to improve the integration between the 
integrated thermal-structural analysis capab 
framework of a computer code is outlined. 
V.T. 

design analysis study of a 
ed scramjet engine for a 
ite-element methodology, 
e-difference codes to the 
transports and structures 
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se two disciplines. The 
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Design against fatigue - Current trends (for aircraft structural 
reliability) 

(AA)KIRKBY, W. T.; (AB)FORSYTH, P. 3.   E.; (AC)MAXWELL, R. D. J. 
(AC)(Royal Aircraft Establishment, Farnborough, Hants., England) 
AIAA 79-0689 In: Atlantic Aeronautical Conference, Williamsburg, 

Va., March 26-28, 1979, Technical Papers. (A79-27351 10-05) New York, 
American Institute of Aeronautics and Astronautics, Inc., 1979, p. 
27-39.  790000 p. 13 refs 6 In: EN (English)  p.1745 

The current state-of-the-art in design against fatigue of aircraft 
structures is reviewed. An outline is given of the design philosophies 
which have evolved to meet the fatigue problem over the past three 
decades. Problems of design and operation are summarized with 
reference to fatigue loads, design trends and developments (e.g. 
active control technology and in-service load measurement), desig i 
methods (e.g., the finite element method), and fatigue design with 
metallic as well as with composite materials. 
B.J. 

Design of advanced titanium structures (for Advanced Tactical 
Systems aircraft fuselage) 

(AA)PAEZ, C. A.; (AB)GORDON, R. 
(AB)(Grumman Aerospace Corp., Bethpage, N.Y.) 
AIAA PAPER 79-1805 F33615-77-3109 American Institute of 

Aeronautics and Astronautics, Aircraft Systems and Technology Meeting, 
New York, N.Y., Aug. 20-22, 1979, 12 p. 790800 p. 12 In: EN 
(English)  p.3881 

An application of superplastic forming/diffusion bonding (SPF/DB) 
techniques to a Mach 2.0-class aircraft (ATS/BLAST) is discussed. 
Consideration is given to high-temperature environment due to 
aerodynamic and engine heating; loads and dynamic analyses; fracture 
mechanics analyses of SPF/DB structures; detail design of major 
components; and concept evaluation. Emphasis is placed on 
maintainability and reliability assessment and weight and cost 
analyses of advanced concepts. Optimization techniques, joint details, 
and design/process/tooling interactions are outlined. Attention is 
given to potential problem areas and future applications of this new 
design/fabrication method. 
V.T. 

Substructuring methods for design sensitivity analysis and 
structural optimization  / Interim Technical Report, May - Aug. 1977 

(AA)GOVIL, A. K.; (AB)ARORA, 3.  S.; (AC)HAUG, E. J. 
Iowa Univ., Iowa City.  (14630032) Materials Engineering Div. 
AD-A065935; TR-34 DAAK11-77-C-0023; DAAA09-76-C-2013 770800 p. 

229 refs 0 In: EN (English) Avail.: NTIS HC All/MF AOl  p.1931 

This report presents an iterative method for optimal design of large 
scale structures that incorporates the concept of substructuring. 
Design sensitivity analysis for the method is developed in a state 
space setting, in which the symmetry of the structural stiffness 
matrix is utilized to define efficient adjoint calculations that yield 
explicit design derivatives. The entire procedure is then presented as 
a convenient computational algorithm. Applications of the method are 
given for optimal design of two and three dimensional truss, idealized 
wing, and framed structures. Computer programs based on the present 
algorithm are presented for three truss structures (10 member plane 
cantilever truss, 200 member plane truss, 63 member space truss), 
three idealized wing structures (18 element wing box beam, 39 element 
rectangular wing, 150 element swept wing), and three framed structures 
(one-bay two-story plane frame, two-bay six-story plane frame, 48 
element space frame). Results obtained with the substructing 
formulation are compared first with results obtained without 
substructing and then with results obtained with other methods. 
GRA 

oa 



Fracture Mechanics Design Methodology  (aircraft structures) 
Advisory  Group for Aerospace Research and Development, Paris 

(France).  (AD481245) 
AGARD-LS-97;  ISBN-92-835-1294-4i AD-A066808 790100 p. 236 refs 0 

AGARD lecture series presented at Delft, The Netherlands, 5-6 Oct. 
1978j  Munchen, Germany, 9-10 Oct. 1978; Sacavem, Portugal, 12-13 Oct. 
1978 In: EN (English) Avail.: NTIS HC All/MF AOl  p.1435 

The state of the art of the application of fracture mechanics to the 
fail safety and damage tolerance assessment of aircraft structures is 
examined. Basic principles of fracture mechanics are reviewed. It is 
shown that although damage assessment analysis has passed the stage 
where tests were the only means to get answers to pertinent questions 
regarding crack growth and residual strength, tests are still 
indispensable. For individual titles, see N79-20140 throuoh N79-20420. 

Decreasing stress concentrations in structures made of high-strength 
materials 

K voprosu 0 snizhenii kontsentratsii napriazhenii v konstruktsiiakh 
iz vysokoprochnykh materialov 

(AA)GALKINA, N. S.; (AB)GRISHIN, V. I. 
TsAGI, Uchenye Zapiski, vol. 8, no. 1, 1977, p. 148-151. In 

Russian.  770000 p. 4 refs 6 In: RU (Russian)  p.249 

A method of designing for minimal local stresses in a main frame 
prepared from high-strength aluminum (or steel) alloys is proposed. 
Stresses are determined by the finite element method, within the 
framework of small elastoplastic deformation theory. The relations 
used for writing a program for computing the stress-strain state of a 
structure in the case of elastic and inelastic behavior of the 
material are examined. 
V.P. 

68 

Application of an interactive graphics system for the design and 
optimization of aircraft lifting surfaces 

(AA)DROR, B.; (AB)EMIL, S.; (AC)BURNS, J.; (AD)KALMAN, H. 
(AD)(Israel Aircraft Industries, Ltd., Lod, Israel) 
In: Symposium on Applications of Computer Methods in Engineering, 

Los Angeles, Calif., August 23-26, 1977, Proceedings. Volume 2. 
(A79-12401 02-31) Los Angeles, University of Southern California, 
1978, p. 787-797.  780000 p. 11 refs 9 In: EN (English)  p.185 

Application of a computerized procedure for the design and 
optimization of aircraft lifting surface structures employing 
interactive graphics is described. The procedure represents a 
subsystem of the multidisciplinary Interactive Structural Sizing and 
Analysis System (ISSAS), currently being used at lAI. The paper 
describes the modules that deal with (1) the design of the primary 
structural layout, (2) the finite element modeling, (3) the analysis 
and optimization and (4) the reduction of analysis results. The 
procedure described herein represents a sizable saving in elapsed time 
and manhours per design iteration relative to conventional methods, 
and provides for the design of a superior quality structure in a 
shorter period of time and at lower cost. 
(Author) 

Conference on Helicopter Structures Technology, Moffett Field, 
Calif., November 16-18, 1977, Proceedings 

Conference sponsored by the American Helicopter Society and NASA. 
Moffett Field, Calif., U.S. Army Air Mobility Research and Development 
Laboratory, 1978. 211 p (For individual items see A79-10904 to 
A79-10921) 780000 p. 211 In: EN (English) $10.00  p.13 

Work on advanced concepts for helicopter designs is reported. 
Emphasis is on use of advanced composites, damage-tolerant design, and 
load calculations. Topics covered include structural design flight 
maneuver loads using PDP-10 flight dynamics model, use of 3-D finite 
element analysis in design of helicopter mechanical components, 
damage-tolerant design of the YUH-61A main rotor system, survivability 
of helicopters to rotor blade ballistic damage, development of a 
multitubular spar composite main rotor blade, and a bearingless main 
rotor structural design approach using advanced composites. 
P.T.H. 



Minimum weight design of stiffened paneis with fracture constraints 
(AA)DOBBS, M. W.; (AB)NELSON, R. B. 
(ABXCalifornia, University, Los Angeles, Calif.) 
AF-AF0SR-74-2460A  Computers and Structures, vol. 8, June 1978, p. 

753-759.  780600 p. 7 refs 22  In: EN (English)  p.4029 

An efficient optimality criteria method is presented for the 
automated minimum-weight design of structural components for which 
analytical solutions for developed stress intensity factors are not 
available. The inclusion of fracture constraints in the automated 
design process is a logical extension of present structural 
optimization methods which include stress, displacement, buckling, 
frequency and aeroelastic flutter constraints. The finite element 
method is used for stress analysis, while the strain energy release 
method (the compliance method) is employed to calculate developed 
opening mode stress intensity factors. Only two structural analyses 
are needed at each design iteration to calculate the necessary 
response gradient information and the developed stress intensity 
factor. The structure is iteratively resized to satisfy the 
Kuhn-Tucker necessary conditions for a local optimum design. The 
design of a flat stiffened panel approximating an aircraft fuselage 
panel is presented. 
S.O. 

Analysis of semimonocoque beam sections by the displacement method 
(AA)MANTEGAZZA, P. 
(AA)(Milano, Politecnico, Milan, Italy) 
L'Aerotecnica - Missili e Spazio, vol. 56, Dec. 1977, p. 179-182. 

771200 p. 4 refs 9 In: EN (English)  p.2547 

Displacements and rotations of a semimonocoque beam struc 
moderate taper and sweep are studied through use of a 
implemented  program for digital computers.  Adoption of 
displacements and torsion deformations as the primary unknowns 
development of an efficient analytical program for the a 
fuselage structure. The displacement formulation employed 
analysis is a special version of the general warping function 
used to solve torsion and shear problems for arbitrary sections 
J.M.B. 
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Interactive design and optimization of flight-vehicle lifting 
surface structures 

(AA)DROR, B.; (AB)EMIL, 5.; (AC)BURNS, 3.;   (AD)KALMAN, H. 
(AD)(Israel Aircraft Industries, Ltd., Lod, Israel) 
Computers and Structures, vol. 8, June 1978, p. 657-665. 780600 p. 

9 refs 15 In: EN (English)  p.4028 

A computerized procedure, including low-cost time-shared graphic 
display terminals, for the interactive sizing and optimization of 
flight-vehicle lifting-surface structures is described. The modules 
pertaining to the interactive structural design, finite-element 
modeling and optimization features are discussed. They are: (1) a 
module for graphic layout, design and modification of lifting-surface 
structures; (2) one for automated-interactive graphics generation, 
visual checkout and modification of three-dimensional structural 
analysis finite element models; (3) one for analysis and optimization; 
and (4) another for interactive graphics visualization of structural 
analysis results. The use of low-cost graphics terminals in 
conjunction with centralized data bases is the key to ensuring sizable 
savings in design time and cost with a high-quality structure. 
S.D. 

The evaluation of several finite elements for the calculation of 
wing structures 

Valutazione di alcuni elementi finiti per il calcolo di strutture 
alari 

(AA)BORRI, M.; (AB)CARDANI, C. 
(AB)(Milano, Politechnico, Milan, Italy) 
In: Associazione Italiana di Aeronautica e Astronautica, National 

Congress, 3rd, Turin, Italy, September 30-Dctober 3, 1975, 
Proceedings. Volume 1. (A78-19026 06-01) Turin, Libreria Editrice 
Universitaria Levrotto e Bella, 1975, p. 291-300.  In Italian.  750000 

p. 10 refs 6 In: IT (Italian)  p.990 

Plane-stress isopar 
in conjunction with 
with  several  other 
rectangular, and longi 
of wing structures, 
rectangular box struc 
loading  conditions, 
conjunction with the 
and widely applicable 
J.M.B. 

ametric triangular elements with six nodes, used 
axial elements having three nodes, are compared 

types of elements (three-node triangular, 
tudinal) adopted for finite element calculations 
The comparison involves analysis of a typical 

ture with a missing section subjected to various 
The  isoparametric triangular elements,  in 
axial elements, is found to offer an efficient 

analytical technique. a 



The AV-8B fatigue test program 
(AA)NEWMAN, N. D. 
(AA)(McDonnell Aircraft Co., St. Louis, MO) 
IN: Helicopter Fatigue Specialists' Meeting, St. Louis, MO, October 

16-18, 1984, Proceedings (A86-18430 06-01). Alexandria, VA, American 
Helicopter Society, 1984, p. 14-0 to 14-27. 840000 p. 28 In: EN 
(English)  p.O 

A structural fatigue test program was conducted over 1982-1984 as 
part of the AV-8B Full Scale Development Program which encompassed a 
full scale airframe fatigue test and auxiliary fatigue tests of both 
metallic and composite structural components. The 12,000 hours of 
severe airframe use thus simulated were equivalent to two service 
lifetimes. Attention is given to the AV-8B's fatigue design 
philosophy, load spectra, fatigue test methods, and test results, with 
attention to problem resolution. 
O.C. 

Optimization of airplane wing structures under gust loads 
(AA)RAO, S. S. 
(AA)(San Diego State University, CA) 
Computers and Structures (ISSN 0045-7949), vol. 21, no. 4, 1985, p. 

741-749. 850000 p. 9 refs 12 In: EN (English)  p.O 

A methodology is presented for the optimum design of aircraft wing 
structures subjected to gust loads. The equations of motion, in the 
form of coupled integro-differential equations, are solved numerically 
and the stresses in the aircraft wing structure are found for a 
discrete gust encounter. The gust is assumed to be one minus cosine 
type and uniform along the span of the wing. In order to find the 
behavior of the wing structure under gust loads and also to obtain a 
physical insight into the nature of the optimum solution, the design 
of the typical section (symmetric double wedge airfoil) is studied by 
using a graphical procedure. Then a more realistic wing optimization 
problem is formulated as a constrained nonlinear programming problem 
based on finite element modeling and the optimum solution is found by 
using the interior penalty function method. A sensitivity analysis is 
conducted to find the effects of changes in design variables about the 
optimum point on the response quantities of the wing structure. 
Author 

a 

Three-dimensional elastic-plastic finite-element analysis of fatigue 
crack propagation  / Final Report, 1 3un.   -  1 Nov. 1985 

(AA)GOGLIA, G. L.; (AB)CHERMAHINI, R. G. 
Old Dominion Univ., Norfolk, Va. (0S853217) Dept. of Mechanical 

Engineering and Mechanics. 
NASA-CR-176415; NAS 1.26:176415 NAGl-529 851100 p. 60 refs 0 

In: EN (English) Avail.: NTIS HC A04/MF AOl  p.787 

Fatigue cracks are a major problem in designing structures subjected 
to cyclic loading. Cracks frequently occur in structures such as 
aircraft and spacecraft. The inspection intervals of many aircraft 
structures are based on crack-propagation lives. Therefore, improved 
prediction of propagation lives under flight-load conditions 
(variable-amplitude loading) are needed to provide more realistic 
design criteria for these structures. The main thrust was to develop a 
three-dimensional, nonlinear, elastic-plastic, finite element program 
capable of extending a crack and changing boundary conditions for the 
model under consideration. The finite-element model is composed of 
8-noded (linear-strain) isoparametric elements. In the analysis, the 
material is assumed to be elastic-perfectly plastic. The cycle 
stress-strain curve for the material is shown Zienkiewicz's 
initial-stress method, von Mises's yield criterion, and Drucker's 
normality condition under small-strain assumptions are used to account 
for plasticity. The three-dimensional analysis is capable of extending 
the crack and changing boundary conditions under cyclic loading. 
Author 

Israel Annual Conference on Aviation and Astronautics, 26th, Haifa, 
Israel, February 8, 9, 1984, Collection of Papers 
Conference supported by Technion - Israel Institute of Technology, 

Tel Aviv University, Ministry of Defence of Israel, et al. Haifa, 
Israel, Technion - Israel Institute of Technology, 1984, 358 p. For 
individual items see A85-37177 to A85-37213. 840000 p. 358 In: EN 
(English)  p.2447 

The experimental determination of the effect of nonlinear stiffness 
on the vibration of elastic structures is considered along with an 
unsteady wake model of the aerodynamic behavior of a rotor in forward 
flight, the influence of fighter aircraft load spectrum variations on 
fatigue crack initiation and growth, a fatigue life evaluation program 
for the Kfir aircraft, computer-aided tube routing design in aircraft, 
and a pursuit evasion game with a limited detection range. Attention 
is given to a crack growth analysis in multiple load path structure, 
the crack propagation analysis of longitudinal skin cracks in a 
pressurized cabin, a supersonic panel method based on the triplet 
singularity, a method to estimate the service life of a case bonded 
rocket engine, and computational aerodynamics and supercomputers. 
Other topics explored are related to the concepts and application of 
aircraft damage tolerance analysis, the influence of initial 
imperfections on nonlinear free vibration of elastic bars, and wing 
optimization and fuselage intergration for future generations of 
supersonic aircraft. 
G.R. 



Finite element analysis of an ultralight aircraft 
(AA)BAUGHN, T. V.; (AB)PACKMAN, P. F. 
(AB)(Southern Methodist University, Dallas, TX) 
AIAA PAPER 85-0616 IN: Structures, Structural Dynamics, and 

Materials Conference, 26th, Orlando, FL, April 15-17, 1985, Technical 
Papers. Part 1 (A85-30226 13-39). New York, American Institute of 
Aeronautics and Astronautics, 1985, p. 71-78. 850000 p. 8 In: EN 
(English)  p.O 

A finite element analysis was conducted to determine the structural 
integrity of a high wing cable supported ultralight aircraft. A simple 
symmetrical half structure, macro model was analyzed, subjected to 
level flight loading, and two wheel landing loading conditions. 
Flexural and bending stiffness for the supported and unsupported wing 
were also determined. A preliminary damage tolerance analysis was 
conducted in which selected cable elements and wing compression struts 
were removed, and the redistributed loads calculated and possible 
aircraft flight configurations examined. The model can generate all 
cable loads, displacement of each structural node, for each loading 
condition, generate displacement plots, and locate potential highly 
stressed regions. 
Author 

Bonded repairs to surface flaws (by adhesive BFRP patching) 
(AA)aONES, R.; (AB)CALLINAN, R. J. 
(AB)(Defence Science and Technology Organisation, Aeronautical 

Research Laboratories, Melbourne, Australia) 
Theoretical and Applied Fracture Mechanics (ISSN 0167-8442), vol. 2, 

Oct. 1984, p. 17-25.  841000 p. 9 refs 8  In: EN (English)  p.O 

A method using BFRP (boron fiber reinforced plastic) patches for the 
repair of surface flaws in aluminum alloy aircraft components is 
presented. The method is best suited to cases where the cracking is 
primarily due to the presence of inclusions and the stress field is 
relatively low. A new procedure for repairing cracked bolt holes which 
involves the use of a bonded insert is also proposed. By using a 
bonded sleeve, significant reductions in the fretting at the hole and 
in the stress intensity factors along the crack front have been 
obtained. The design of preventative repair schemes is illustrated by 
considering a recent repair to a fairing attachment hole. Both 
methods, which involve the use of adhesive bonding, have been found to 
lead to increases in fatigue life. 
M.D. 

Design methods and technology of transport aircraft of today and 
tomorrow 

Methodes de conception et technologie des avions de transport 
aujourd'hui et demain 

(AA)LENSEIGNE, C. 
(AA)(Aerospatiale, Toulouse, France) 
L'Aeronautique et I'Astronautique (ISSN 0001-9275), no. 107, 1984, 

p. 4-12. In French.  840000 p. 9  In: FR (French)  p.O 

The design tools and technology necessary to achieve maximum economy 
in the aircraft of today and tomorrow are discussed. The objectives of 
aerodynamic research on transport aircraft are to reduce drag and thus 
save on fuel, to increase the maximum lifting capacity, and to develop 
antiturbulence and antiflutter systems. An optimization study of the 
aircraft structures which is based on the finite element method and an 
examination of the materials used in the structures is presented. An 
ergonomic study of aircrew stations reveals the importance of the 
man-machine interface. Automated active control with applications in 
reduced longitudinal stability, in airfoil loading control, and in 
flutter control is considered. The revival of the propellar in 
short-range aircraft is also discussed. 
H.D. 

Structural crashworthiness; International Symposium, 1st, University 
of Liverpool, Liverpool, England, September 14-16, 1983, Invited 
Lectures 

(AA)aONES, N.; (AB)WIERZBICKI, T. 
(AA)ED.; (AB)ED. 
(AA)(Liverpool, University, Liverpool, England); (AB)(Polska 

Akademia Nauk, Warsaw, Poland; MIT, Cambridge, MA) 
London, Butterworths, 1983, 463 p. No individual items are 

abstracted in this volume. 830000 p. 463 In: EN (English)  p.O 

The application of solid, structural, and experimental mechanics to 
predict the crumpling behavior and energy absorption of thin-walled 
structures under quasi-static compression and various dynamic crash 
loadings is examined in reviews of current research. Both fundamental 
aspects and specific problems in the design of crashworthy aircraft, 
automobiles, railroad cars, ships, and offshore installations are 
considered. Topics discussed include laterally compressed metal tubes 
as impact-energy absorbers, crushing behavior of plate intersections, 
axial crushing of fiber-reinforced composite tubes, finite-element 
analysis of structural crashworthiness in the automotive and aerospace 
industries, crash behavior of aircraft fuselage structures, aircraft 
crash analysis, ship collisions, and structural damage in airship and 
rolling-stock collisions. Photographs, graphs, drawings, and diagrams 
are provided. 
T.K. 

a 



intensity factors in structural 

napriazhenii  v 

A method for calculating stress 
elements with curvilinear cracks 

Metod  rascheta  koeffitsientov  intensivnosti 
elementakh konstruktsii s krivolineinymi treshchinami 

(AA)GRISHIN, V. I.; (AB)DONCHENKO, V. lU. 
TsAGI,  Uchenye Zapiski  (ISSN 0321-3429), vol. 14, no. 2, 1983, p. 

105-112. In Russian.  830000 p. 8 refs 8 In: RU (Russian)  p.3261 

An energy method has been developed for determining stress intensity 
factors in thin-walled structures with multiple-nucleus curvilinear 
cracks. The procedure has been implemented in a set of specialized 
software, FITTING, designed for the local strength analysis of 
aircraft structures. The accuracy of the procedure is evaluated, and 
examples of stress intensity and crack path computations are 
presented. 
V.L. 

Structures, Structural Dynamics and Materials Conference, 25th, Palm 
Springs, CA, May 14-16, 1984, Technical Papers. Part 1 

Conference sponsored by AIAA, ASME, ASCE, and AHS. New York, 
American Institute of Aeronautics and Astronautics, 1984, 548 p. 
840000 p. 548 In: EN (English)  p.1908 

Papers are presented on topics including optimum reliability-based 
design of plastic structures; shape optimization; expert systems and 
computer-aided engineering; stochastic differential equations for 
structural dynamics; and noise transmission through aircraft panels. 
Other topics include bolted joints in laminated composites; vacuum 
degassing behavior of beryllium; the role of ply buckling in the 
compressive failure of graphite/epoxy tubes; and Langrange shell 
elements with spurious mode control. For individual items see 
A84-31627 to A84-31682 
a.N. 

ON 

Aircraft structures (2nd edition) (Book) 
(AA)AZAR, 3. J.; (AB)PEERY, D. G. 
(AA)(Tulsa, University, Tulsa, OK) 
New York,  McGraw-Hill Book Co., 1982, 463 p. 

104 In: EN (English) $37.50  p.2283 
820000 p. 463 refs 

An exposition is made of the fundamental concepts in the design and 
analysis of flight structures, and unified analytical tools are 
developed for the prediction and assessment of structural behavior 
irrespective of the field of application. Attention is first given to 
the definition of a structural system and its constituents, loads, 
supports, and reactions, as well as to the concepts of statics and the 
principles of mechanics. There follows a discussion of the basic 
elasticity relations and of material behavior and selection. The load 
analysis of flight vehicles and the analysis and design of specific 
flight vehicle structural components is undertaken using finite 
difference, stiffness matrix and energy methods for the deflections of 
structures. 
O.C. 

The problem of the analytical formulation of aircraft surfaces 
K zadache analiticheskogo postroeniia poverkhnostei letatel'nykh 

apparatov 
(AA)SNIGIREV, V. F. 
Aviatsionnaia Tekhnika (ISSN 0579-2975), no. 4, 1983, p. 100-102. In 

Russian.  830000 p. 3 refs 5 In: RU (Russian)  p.1957 

Reference is made to studies by Zav'ialov et al. (1980) and Ahlberg 
et al. (1972) in which two-dimensional splines were constructed for 
rectangular regions; one-dimensional splines were set up with respect 
to coordinate lines. For the case of an arbitrary arrangement of 
interpolation knots, however, a method of this type cannot be used. In 
the study made by Marchuk (1977), a two-dimensional spline was set up 
from the minimization of a certain functional. For this functional, 
however, the selection of joint approximating functions on the 
interpolation network of knots involves considerable difficulty. 
Consideration is therefore given to a different functional, one which, 
it is shown, makes it easier to find a solution. 
C.R. 



status of new aerothermodynamic analysis tool for high-temperature 
resistant transparencies 

(AA)VARNE:R, M. O.; (AB)BABISH, C. A. 

Sverdrup Technology, Inc., Arnold Air Force Station, Tenn. ( 

S6005421) 
AD-P003236 F33615-81-C-3412 In Dayton Univ. Conf. on Aerospace 

Transparent Mater, and Enclosures p 1132-1157 (SEE N84-26596 17-01) 
831200 p. 26 In: EN (English) Avail.: NTIS HC AOS/MF AOl  p.2598 

This paper summarizes the status of the definition, selection, 
modification, and development of a Specific Thermal Analyzer Program 
for Aircraft Transparencies (STAPAT). The code developed will merge 
state-of-the-art technology, code accuracy requirements, and the 
definition of code function requirements resulting in an 
aerothermodynamic analytical technique that is specifically applicable 
and limited to the study of high-temperature resistant transparencies 
for high-speed aircraft. The aerothermodynamic methodologies required 
for the definition of the convective heat-load requirements of the 
STAPAT are described. These include the identification of inviscid 
methodologies covering the subsonic-to-supersonic-speed flight regime 
complex three-dimensional configurations consisting of real canopy 
geometries. The external forced convection methodology is described 
which includes complex three-dimensional effects resulting from the 
circumferential and streamwise variation of the local heating loads, 
the forced convection heat transfer as influenced by wall-temperature 
effects and transition location, and variable-edge entropy effects. 

GRA 

Aeroelasticity and optimization at the design stage 
AEROELASTICITE ET OPTIMISATION EN AVANT-PROJET 
(AA)PETIAU, C; (AB)BOUTIN, D. 
Avions Marcel Dassault-Breguet Aviation, Saint-Cloud (France). ( 

A9987704) 
In AGARD Aeroelastic Considerations in the Preliminary Design of 

Aircraft 18 p (SEE N84-11116 02-01) 830900 p. 18 refs 0 In: FR 
(French) Avail.: NTIS HC AlVMF AOl  p.172 

A procedure developed for static and dynamic structural analysis is 
completed in several weeks using a three view scheme of the aircraft, 
laws of the relative mass of wing units, a summary definition of the 
internal architecture, a choice of materials, and construction 
technology. For each version studied, calculation at the design stage 
involves: (1) a first finite element analysis of rough planning with 
sampling and simplified loads; (2) analysis of problems of static 
aeroelasticity, computation of loads by accounting for aeroelasticity, 
and the automatic study of surrounding loads; (3) computation of 
flutter with a study of critical configurations with exterior loads 
removed; and (4) the automatic optimization of sampling, supplying the 
minimal weight of the structure that satisfies the constraints of 
static behavior, of aerodistortion limitations, and of the speed of 
velocity of flutter. A combat aircraft with wings made composite 

materials is analyzed. 
A.R.H. 

Validation of the MAGNA (Materially and Geometrically Nonlinear 
Analysis) computer program for nonlinear finite element analysis of 
aircraft transparency bird impact 

(AA)MCCARTY, R. E.; (AB)HART, 2.   I. 
Air Force Wright Aeronautical Labs., Wright-Patterson AFB, Ohio. ( 

AJ840964) 
AD-P003229 In Dayton Univ. Conf. on Aerospace Transparent Mater, 

and Enclosures p 921-972 (SEE N84-26596 17-01) 831200 p. 52 In: EN 
(English) Avail.: NTIS HC A08/MF AOl  p.2596 

The approach taken for validation of MAGNA is based on the 
simulation of full scale bird impact tests followed by a comparison of 
the experimental data with that computed by MAGNA. To date, five of 
these validation studies have been accomplished and several more 
remain to be conducted. This paper summarizes the results of the 
validation studies which have been completed to date and lists the 
user guidelines which have been established in the process. These 
first validation studies may be characterized as analyses of simple 
structures, i.e., only single transparent panels have been analyzed as 
opposed to complex systems of multiple panels joined by metallic 
edgemember support structure. These same studies may be further 
characterized as involving only simple definitions of boundary 
conditions and a somewhat arbitrary procedure for the explicit 
definition of bird impact pressure loading on the surface of the 
structure. The cases selected for study were a flat, laminated glass 
windshield panel; a curved, laminated glass windshield panel; a 
curved, laminated plastic windshield panel; a bubble-shaped monolithic 
plastic one-piece canopy; and a heated glass cylinder (which involved 
neither an aircraft transparency system per se nor bird impact loads). 

GRA 

Strength-flutter structural optimization of a supersonic cruise 

combat aircraft 
(AA)DOTSON, B. F. 
(AA)(Boeing Military Airplane Co., Seattle, WA) 
IN: International Symposium on Aeroelasticity, Nuremberg, West 

Germany, October 5-7, 1981, Collected Papers (A83-49176 24-01). 
Cologne, Deutsche Gesellschaft fuer Luft- und Raumfahrt, 1982, p. 
208-217.  820000 p. 10 refs 12 In: EN (English)  p.3547 

The computer program FASTOP has been developed by an American 
aerospace company in concert with the U.S. Air Force Flight Dynamics 
Laboratory. This program resizes a finite element model of a composite 
structure to a fully stressed design, provides flutter optimization 
for a specified flutter speed, and then iterates between strength and 
flutter for an optimized design. The present investigation is 
concerned with work which was performed to evaluate the use of the 
program FASTOP in the aircraft design process, taking into account the 
difficulties which can arise when it is attempted to optimize real 
life structures. The approach used in the evaluation of FASTOP 
involved the application of the program to a supersonic cruise combat 

aircraft. 
G.R. 
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Algorithmic mass-factoring of finite element model analyses 
(AA)PINCHA, P. 3. 
(AA)(Boeing Military Airplane Co., Seattle, WA) 
SAWE PAPER 1451 Society of Allied Weight Engineers, Annual 

Conference, 41st, San 3ose, CA, May 17-19, 1982. 26 p. 820500 p. 26 
In: EN (English)  p.3009 

A serious problem for weight technology engineers is related to the 
interpretation, manipulation, or conversion of Finite Element Modeled 
(FEM) Structural Optimization and Analyses Programs (SOAP's) sized 
structural data into realistic estimates of projected 'as-built' 
airframe weight. During preliminary design of aircraft structures, 
particularly low-aspect-ratio wings (having multiloadpaths), initial 
structural analysis and sizing is almost universally accomplished 
using a FEM-SOAP system. The output of the FEM-SOAP is the weight of a 
theoretical structure. However, the weight engineer must use this 
theoretical weight as a base in the development of an 'as-built' total 
weight estimate. The present investigation provides a unique 
algorithmic mass factoring method which accommodates the complexity of 
the FEM and presents the weight of 'as-built' structure in terms 
familiar to the weight engineer. 
G.R. 

Analytical control 
finite-element method 
Analiticheskii  kontrol' 

metode konechnykh elementov 
(AA)VOROBEV, V. F. 
TsAGI, Uchenye Zapiski 

155-158. In Russian. 820000 

of the shape of the polygons used in the 

formy mnogougol'nikov, primeniaemykh v 

(ISSN 0321-3429), vol. 13, no. 5, 1982, p. 
p. 4 In: RU (Russian)  p.2521 

» 

Formulas are derived for analyzing the shape of plane polygonal 
finite elements specified by nodular point coordinates and element 
numbers. The analytic procedure proposed here is designed to identify 
errors in the initial data for a problem solved by means of the finite 
element method. The procedure also makes it possible to control the 
shape of the finite elements without using the graphical 
representation of the computational scheme when solving the problem on 
a computer. The procedure is demonstrated for a low-aspect-ratio wino. 
V.L. 

Design of an aerobatic aircraft wing using advanced composite 
materials 

(AA)LOUDENSLAGER, L. E. 
(AA)(H. D. Neubert and Associates, Inc., Anaheim, CA) 
SAE PAPER 821346 Society of Automotive Engineers, Aerospace 

Congress and Exposition, Anaheim, CA, Oct. 25-28, 1982. 7 p. 821000 
p. 7 In: EN (English)  p.2463 

CAD efforts at tailoring a new configuration for a competition 
aerobatics aircraft are described. One goal of the privately funded 
program was to minimize structural weight, thus enhancing the 
thrust/weight ratio critical to aerobatic maneuvers. The new design 
featured an optimized tubular steel fuselage, advanced composite wings 
(graphite epoxy), horizontal and vertical tail, landing gear legs, and 
secondary structure and fairings. NASA performed computations of the 
expected aerodynamic loads with a doublet fortex formulation expressed 
as a two-dimensional inviscid flow finite element model. The NASTRAN 
program yielded stress contour pilots and the first ten natural 
frequencies, which were found to reside above the design maneuvering 
speed due to the use of composite materials. 
M.S.K. 

Force method optimization 2. Volume 1: Theoretical development / 
Final Technical Report, Aug. 1980 - Dec. 1982 

(AA)BATT, 3.   R.; (AB)GELLIN, S.; (AC)GELLATLY, R. A. 
Textron Bell Aerospace Co., Buffalo, N. Y.  (TV737355) A3840964 
AD-A127073; AFWAL-TR-82-3088-VOL-1 F33615-80-C-3214; AF PROJ. 2307 

AFWAL Wright-Patterson AFB, Ohio 821100 p. 126 refs 0 In: EN 
(English) Avail.: NTIS HC A07/MF AOl  p.3358 

The document investigates the utilization of the force method of 
finite element analysis for the automatic iterative design of aircraft 
structures with stress, displacements, maximum and minimum size and 
dynamic constraints. It develops a rapid reanalysis method based on 
the force method for damage assessment. Research has resulted in a 
computer code named OPTFORCE II an expansion of code OPTFORCE I. 
Multiple loading capabilities and four finite elements have been 
included. These are: membrane triangle, membrane quadrilateral, shear 
panel and bar (axial force). Examples of problems solved by the 
OPTFORCE II code are presented and compared to the optimization code 
OPTIM III for purposes of establishing the efficiency of the force 
method vs. the "displacement' method of analysis. A technical 
discussion of the research conducted is presented wherein conclusions 
and recommendations for future research topics are oiven. 
GRA 



(AD)SHIRATA, T. 
and Development 

Development of the advanced composite ground spoiler for C-1 medium 
transport aircraft 

(AA)YAMAUCHI, F.; (AB)MOGAMI, K.; (AC)MASAEDA, H. 
(AB)(Japan  Defense Agency, Technical Research 

Institute,  Tachlkawa,  Tokyo, Japan); (AD)(Kawasaki Heavy Industries, 
Ltd., Aircraft Div., Kagamihara, Gifu, Japan) 

In: Composite materials: Mechanics, mechanical properties and 
fabrication; Proceedings of the Japan-U.S. Conference, Tokyo, Japan, 
January 12-14, 1981. (A82-39851 19-39) Barking, Essex, England, 
Applied Science Publishers, 1982, p. 504-512. 820000 p. 9 In: EN 
(English)  p.2979 

The research and development program for the graphite/epoxy ground 
spoiler for the C-1 medium transport aircraft is discussed. The design 
requirement was that the spoiler provide strength and rigidity not 
less than the baseline spoiler in addition to interchangeability. The 
design analysis was done by finite element method and the detail 
design configurations of major structural components were evaluated by 
trade-off tests in the initial design phase, showing that the 
components met design requirements. Successful environmental 
characteristic tests were also conducted. The scattering 
characteristic of the Gr/E for static and fatigue strength were 
obtained and found to be significantly superior to that of aluminum 
alloy. Full scale verification tests were also passed. 
CD. 

Structures and Dynamics Division research and technology plans, FY 
1982 

(AA)BALES, K. S. 
National Aeronautics and Space Administration. Langley Research 

Center, Hampton, Va.  (ND210491) 
NASA-TM-84509; NAS 1.15:84509 505-33-33-11 820600 p. 56 In: EN 

(English)  Avail.: NTIS HC A04/MF AOl  p.2974 

Computational devices to improve efficiency for structural 
calculations are assessed. The potential of large arrays of 
microprocessors operating in parallel for finite element analysis is 
defined, and the impact of specialized computer hardware on static, 
dynamic, thermal analysis in the optimization of structural analysis 
and design calculations is determined. General aviation aircraft 
crashworthiness and occupant survivability is also considered. 
Mechanics technology required for design coefficient, fault tolerant 
advanced composite aircraft components subject to combined loads. 
Impact, postbuckling effects and local discontinuities are developed. 
S.L. 

Finite-element modeling of a fighter aircraft canopy acrylic panel 
(AA)LABRA, J. J. 
(AA)(Southwest Research Institute, San Antonio, TX) 
Journal of Aircraft, vol. 19, June 1982, p. 480-484.  820600 p. 5 

In: EN (English)  p.2353 

A detailed three-dimensional stress analysis of a canopy aircraft 
acrylic panel was conducted to investigate the probable cause of a 
recent in-flight acrylic panel failure. The analysis was made using a 
general-purpose finite-element computer program. Based in part on this 
analysis, probable design problems associated with the canopy were 
identified. The study clearly demonstrates that computer-based 
technology can be successfully used in determining probable causes of 
failure in geometrically complex structures. 
(Author) 

Finite element thermal analysis of convectively-cooled aircraft 
structures 

(AA)WIETING, A. R.; (AB)THORNTON, E. A. 
(AA)(NASA, Langley Research Center, Hampton, VA); (AB)(01d Dominion 

University, Norfolk, VA) 
National Aeronautics and Space Administration. Langley Research 

Center, Hampton, Va.  (ND210491) 
In: Numerical methods in heat transfer. (A82-28551 13-34) 

Chlchester, Sussex, England and New York, Wiley-Interscience, 1981, p. 
431-443.  810000 p. 13 refs 8 In: EN (English)  p.2018 

The design complexity and size of convectively-cooled engine and 
airframe structures for hypersonic transports necessitate the use of 
large general purpose computer programs for both thermal and 
structural analyses. Generally thermal analyses are based on the 
lumped-parameter finite difference technique, and structural analyses 
are based on the finite element technique. Differences in these 
techniques make it difficult to achieve an efficient interface. It 
appears, therefore, desirable to conduct an integrated analysis based 
on a common technique. A summary is provided of efforts by NASA 
concerned with the development of an integrated thermal structural 
analysis capability using the finite element method. Particular 
attention is given to the development of conduction/forced-convection 
finite element methodology and applications which illustrate the 
capabilities of the developed concepts. 
G.R. 
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Conference on Aerospace Transparencies, London, England, September 
8-10, 1980, Proceedings 

Conference sponsored by the Society of British Aerospace Companies. 
London, Society of British Aerospace Companies, Ltd., 1981. 713 p (For 
individual items see A82-24302 to A82-24330) 810000 p. 713 In: EN 
(English) $59.50  p.1543 

Among the aircraft transparency design, testing and analysis topics 
covered are: (1) transparency development needs for military aircraft 
in the 1980s, (2) an aircraft transparency design guide, (3) 
deficiencies and constraints affecting the design of cockpit 
transparencies and enclosures, (4) bird strikes, (5) windshield system 
structural enhancement, (6) aircraft transparency bird impact analysis 
using the MAGNA computer program, (7) stretched acrylic transparency 
materials, (8) transport aircraft transparencies, and (9) impact 
resistance test methods. Also considered are (10) abrasion-resistant 
coatings for aircraft, (11) the role of finite element analysis in the 
design of birdstrike-resistant transparencies, and (12) the effects of 
bird orientation on load profile and damage level. 
O.C. 

Advanced concepts for composite structure joints and attachment 
fittings. Volume 1: Design and evaluation / Final Report, Jul. 
1977 - Dec. 1980 

(AA)ALEXANDER, J. V.; (AB)MESSINGER, R. H. 
Hughes Aircraft Co., Culver City, Calif.  (H4173732) A2024546 
AD-A110212; HH-80-402-V0L-1; USAAVRADC0M-TR-81-D-21A DAAJ02-77-C-0- 

076; DA PROJ. 1L2-62209-AH-76 811100 p. 127 refs 0 In: EN 
(English) Avail.: NTIS HC A07/MF AOl  p.1620 

The purpose of this program was to develop the technology of 
applying fiber-reinforced composite materials to helicopter joints and 
attachment fittings that permit disassembly of major components. A 
generic design methodology approach was used to make the data 
developed applicable to ongoing and future helicopter programs. A 
detail design, analysis, and testing program was carried out on the 
three joint and fitting concepts selected: wrapped tension fittings, 
gearbox attachment fittings, and seat attachment fittings. The scope 
of the study included analytical design tools, including finite 
element computer analysis; fabrication techniques, with special 
emphasis on weight and cost effectiveness considerations; structural 
integrity testing, including static, dynamic, failsafe/safe-life, and 
ballistic tolerance considerations; and nondestructive inspection 
(NDI) techniques. 
Author (GRA) 

Interpretation and construction of a dynamic similarity model of the 
A 310 wings 

auslegung und bau eines dynamisch aehnlichen modells des a 310 
fluegels 

(AA)HOENLINGER, H. 
Messerschmitt-Boelkow-Blohm G.m.b.H., Ottobrunn (West Germany). ( 

MT620643) Unternehmensbereich Flugzeuge. 
MBB-FE-17/S/PUB/42; DGLR-81-035 810505 p. 34 refs 0 Presented at 

DGLR-Jahrestagung 1981, Aachen, 11-14 May 1981 In: GM (German) 
Avail.: NTIS HC A03/MF AOl  p.1181 

The design and construction of a model for directional oscillation 
flutter for the A-310 wing with supercritical profile is discussed. 
The rigidity distribution in the model is simulated by a simple metal 
box. The profile geometry and the mass distribution of the model is 
copied exactly by a foam structure coated with a fiberglass laminate. 
A finite element model is used to explain the complicated engine 
mount, which is supported by a profile beam. Data on rigidity and 
vibration measurements are included. 
Transl. by E.A.K. 

A study of the techniques of dynamic analysis of helicopter type 
structures 

(AA)VENN, G. M.; (AB)BOON, D. 3. 
Westland Helicopters Ltd., Yeovil (England). (WW895582) Dynamics 

Dept. 
In DGLR Seventh European Rotorcraft and Powered Lift Aircraft Forum 

21 p (SEE N82-18119 09-01) 810000 p. 21 In: EN (English) Avail.: 
NTIS HC A99/MF AOl  p.1168 

The techniques used in the dynamic analysis of helicopter type 
structures using finite elements are discussed. A test structure was 
designed and built which incorporated many design features found in 
helicopter structures. Experiments were performed on this structure to 
determine the natural frequencies and normal modes. These experimental 
results were compared with theoretical finite element results. 
Altering the build state added one or two extra problems so that these 
could be studied. The modelling problems investigated were: riveted 
panel-stringer constructions, deep fabricated beams, discontinuous 
load paths, bolted joints, honeycomb panels, gearboxes, engine mounts, 
and engines. The techniques used to model these features are 
discussed. Problems were found when attempting to compare the 
theoretical and experimental results. 
N.W. 



Analysis of multiple load path panels containing impact damage 
Advisory   Group   for  Aerospace  Research  and  Development, 

Neuilly-Sur-Seine (France).  (AD455458) 
In its Design Manual for Impact Damage Tolerant Aircraft Struct, p 

195-209  (SEE N82-17160 08-05)  811000  p.  15  In:  EN (English) 
Avail.: NTIS HC All/MF AOl  p.1029 

Many structural configurations cannot be represented as monolithic 
panels in assessing strength degradation from impact damage. The wings 
of transport aircraft, for example, often consist of skin with riveted 
stiffeners. The stiffeners can provide damage containment or crack 
assessment capability that is not considered in element residual 
strength analysis. Since the crack arrestment capability can 
significantly improve the residual strength of damaged structure, the 
stiffening must be included in the analysis. The response of stiffened 
panels to projectile damage, and available analytical techniques for 
residual strength prediction, are discussed. 
T.M. 

Adaptive finite element technology in integrated design and analysis 
/ Final Report, 1 Oct. 1979 - 31 Dec. 1980 (aircraft structures 

design) 
(AA)SZABO, B. A.! (AB)BASU, P. K.; (AC)DUNAVANT, D. A.; 

(AD)VASILOPOULOS, D. 
Washington Univ., St. Louis, Mo. (WG032961) Center for 

Computational Mechanics. 
NASA-CR-164560; WU/CCM-81/1 NSG-1640 810100 p. 94 refs 0 In: EN 

(English) Avail.: NTIS HC A05/MF AOl  p.2682 

An assessment of the potential impact of adaptive finite element 
technology on the analysis part of the aircraft structural synthesis 
process is presented. The main conclusion is that adaptive application 
of the p-version of the finite element method based on indirect error 
estimation procedures results in substantial cost reduction and 
increased reliability of the computed data. Adaptivity based on direct 
a posteriori error estimation has the potential for additional 
savings. 
M.G. 

Stress concentration in elements of aircraft structures (Russian 
book) 

Kontsentratsiia napriazhenii v elementakh aviatsionnykh konstruktsii 
(AA)MAVLIUTOV, R. R. 
Moscow, Izdatel'stvo Nauka, 1981. 144 p. In Russian. 810000 p. 

144 refs 216 In: RU (Russian)  p.4125 

The book deals with methods of calculation and experimental 
determination of stress concentrations in typical elements of aircraft 
structures. Emphasis is placed on problems of stress concentration in 
parts subjected to elastic, plastic, and creep deformation under 
complex loading conditions. The effect of loading history is 
evaluated. Computer algorithms and programs for stress calculation are 
presented together with design optimization guidelines. 
V.L. 

Use of optimization in helicopter vibration control by structural 
modification 

(AA)DONE, G. T. S.; (AB)RANGACHARYULU, M. A. V. 
(AA)(City University, London, England); (AB)(Birla Institute of 

Technology and Science, Pilani, India) 
(European Rotorcraft and Powered Lift Aircraft Forum, European 

Rotorcraft and Powered Lift Aircraft Forum, 5th, Amsterdam, 
Netherlands, Sept. 4-7, 1979.) Journal of Sound and Vibration, vol. 
74, Feb. 22, 1981, p. 507-518. 810222 p. 12 refs 9 In: EN 
(English)  p.1580 

The application of optimization methods to helicopter crew area 
vibration reduction by means of structural modification is studied. 
With stiffness parameters as design variables, forced vibration 
response circles are used to identify the parameters most effective in 
controlling crew area response, thereby reducing them. The problem is 
cast as a nonlinear programming problem, and a sequential 
unconstrained minimization technique incorporating an algorithm is 
used to determine the precise values of the parameters. Although too 
simple for actual engineering design use, the model demonstrates what 
optimization routines make possible. 
O.C. 
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An aeronautical structural analysis system for static analysis 
/HAJIF-I/ ' 

(AA)FENG, Z. 
(AA)(Chinese Aeronautical Establishment, Communist China) 
Acta Aeronautica et Astronautica Sinica, vol. 1, no. 1, 1980, p. 

16-26. In Chinese, with abstract in English. 800000 p. 11 In: CH 
(Chinese)  p.1440 

The HAJIF-I aeronautical structural analysis system for static 
analysis is the first large software system developed by the Chinese 
Aeronautical Establishment. By using multilevel substructure analysis 
and the finite element displacement method, this system is suitable 
for various linear static analyses of aeronautical structures. The 
maximum capacity of the system is 3000 nodal DOF of each substructure, 
99 substructures, and 10 levels of substructures. The system provides 
some statements for automatic data generation; and there are several 
special statements for structural analysis, enabling the user to 
organize his own computation flow. A user's specification for stress 
analysis of an aircraft is presented as an example. 
B.3. 

Sonic fatigue design techniques for advanced composites aircraft 
structures  / Final Technical Report, Aug. 1977 - Dec. 1979 

(AA)HOLEHOUSE, I. 
Rohr Industries, Inc., Chula Vista, Calif.  (RY945193) Aa840964 
AD-A090553; RHR-80-019; AFWAL-TR-80-3019 F33615-77-C-3033 800400 

p. 343 refs 0 In: EN (English)  Avail.: NTIS HC A15/MF AOl  p.301 

A combined analytical and experimental program was conducted in 
order to develop a semi-empirical sonic fatigue design method for 
curved and flat graphite-epoxy skin-stringer panels. A range of 
multi-bay panels was subjected to high intensity noise environments in 
a progressive wave tube. Shaker tests were also performed in order to 
provide additional random fatigue data. Finite-element analyses were 
carried out on the test panel designs, generating static strains and 
frequencies. Multiple stepwise regression analysis was used to develop 
the sonic fatigue design method. Design equations and a nomograph are 
presented. Comparisons of sonic fatigue resistance between graphite 
and aluminum panels were also carried out. The design method developed 
is presented as a self-contained section in this report and is 
suitable for practical design use. 
GRA 

a 

A conversational, topological grid method and optimization of 
structural calculations involving finite elements 
maillage par methode topologique conversationnelle et optimisation 

dans les calculs de structure par elements finis 
(AA)PETIAU, C. 
Avions Marcel 

A9987704) 
AAAF-NT-79-30; 

Astronautique de 

Dassault-Breguet Aviation, Saint-Cloud (France).  ( 

ISBN-2-7170-0578-I   Association Aeronautique et 
France  Paris 790000 p. 32 refs 0 Presented at 

14th Intern. AAAF Aeron. Congr., Paris, 6-8 Jun. 1979 In: FR (French) 
Avail.:  NTIS  HC A03/MF AOl; CEDOCAR, Paris FF 34 (France and EEC) 

FF 39 (others)  p.1003 

A finite element code used in the structural analysis and design of 
MIRAGE aircraft is studied. Particular attention is given to two 
modules of this program: (1) the elaboration of a three dimensional 
grid representation, based on a topological method; and (2) a linear 
optimization of the structural stability parameters. A progressive 
shift in data input techniques towards a man machine conversational 
mode is also discussed. Stress concentration results, including 
aeroelasticity data, and associated computer graphics are shown, using 
the MIRAGE 2000 aircraft as an example. 
Author (ESA) 

Green's functions for stresses, stress intensity factors, and 
displacements in a cracked, infinite, isotropic sheet under symmetric 
loads 

(AA)RODERICK, G. L. 
(AA)(U.S. Army, Structures Laboratory, Hampton, Va.) 
Engineering Fracture Mechanics, vol. 13, no. 1, 1980, p. 95-105. 

800000 p. 11 refs 9 In: EN (English)  p.2358 

Green's functions for stresses, stress intensities, and 
displacements were derived for an infinite cracked isotropic sheet 
under point symmetric loading. First, complex stress functions were 
derived for four point symmetric concentrated loads acting on a 
cracked sheet. Then, the functions and their appropriate derivatives 
were used to express stresses, stress intensities, and displacements 
in terms of unit load components. Stresses and displacements 
calculated by use of the Green's functions were compared with 
coarse-grid finite-element calculations, primarily as a test for the 
existence of algebraic errors. The calculations were in good 
agreement. The results should be useful in the analysis and design of 
damage-tolerant aircraft structures. 
(Author) 



A study of the reinforcement required for cutouts in aircraft 
semi-monocoque structure  / Ph.D. Thesis 

(AA)MOTLEY, G. R. 
Southern Methodist Univ., Dallas, Tex.  (SS949356) 
800000 p. 280 In: EN (English) Avail: Univ. Microfilms Order 

No. 8012578  P.208A 

An automated solution procedure was developed which results in 
substantial savings in time and cost required for static, ultimate 
strength analysis of cutouts in aircraft monocoque structures. A 
specialized preprocessor was developed to use with existing software 
which automatically generates the bulk of the input data. A 
postprocessor was also developed which evaluates the results, revises 
member properties, and iterates until a near optimal solution is 
obtained. A fatigue analysis is also required for most cutout 
installations. Data to support fatigue analysis were extended by use 
of finite element methods to cover most common cutout reinforcement 
configurations. General fatigue design guidelines available in the 
literature were summarized. A third item to consider in development of 
any cutout reinforcement is the method of fabrication to be used for 
individual elements. Decisions should be based on relative costs of 
the various techniques available. A series of studies based in part on 
the cost of an actual cutout installation were completed and the 
results summarized to support future design efforts. 
Dissert. Abstr. 

Computer analysis of semi-monocoque shell sections 
(AA)SHEPS, Z.; (AB)RAIBSTONE, A. I.j 
(AB){Israel Aircraft Industries, Ltd 

Israel Institute of Technology, Haifa, 

(AC)BARUCH, M. 
, Lod, Israel); (AC)(Technion - 
Israel) 

Computers and Structures, vol. 
p. 9 In: EN (English)  p.4361 

A computer program for the an 
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V.T. 

9, Sept. 1978, p. 305-313.  780900 
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Composite structural materials / Semiannual Report, Apr. - Sep. 
1979 

(AA)ANSELL, G. S.; (AB)LOEWY, R. G.; (AC)WIBERLEY, S. E. 
Rensselaer Polytechnic Inst., Troy, N. Y.  (R0935231) 
NASA-CR-162578; SAR-37 NGL-33-018-003 Sponsored in part by AFOSR 

791200  p. 107 refs 0 In: EN (English) Avail.: NTIS HC A06/MF AOl 
p. 695 

A multifaceted program is described in which aeronautical, 
mechanical, and materials engineers interact to develop composite 
aircraft structures. Topics covered include: (1) the design of an 
advanced composite elevator and a proposed spar and rib assembly; (2) 
optimizing fiber orientation in the vicinity of heavily loaded joints; 
(3) failure mechanisms and delamination; (4) the construction of an 
ultralight sailplane; (5) computer-aided design; finite element 
analysis programs, preprocessor development, and array preprocessor 
for SPAR; (6) advanced analysis methods for composite structures; (7) 
ultrasonic nondestructive testing; (8) physical properties of epoxy 
resins and composites; (9) fatigue in composite materials, and (10) 
transverse thermal expansion of carbon/epoxy composites. 
A.R.H. 

Recent developments at ONERA in the field of structural analysis 
methods 

Recents developpements a I'GNERA dans les methodes de calcul des 
structures 

(AA)VALID, R. 
GNERA, TP NO. 1979-79 (Congres International d'Aeronautique, 14th, 

Paris, France, June 6-8, 1979.) ONERA, TP no. 1979-79, 1979. 33 p. In 
French. 790000 p. 33 refs 38 In: FR (French)  p.4168 

Attention is given to such developments at ONERA as variational 
principles for finite element methods, research on the application of 
various methods (i.e., substructuring, perturbation, Ritz methods, 
various algorithms, etc.) which aim to decrease computational cost, 
with increase of accuracy, and research on the homogenization of 
materials or structures with periodic characteristics, composite 
materials, and model identification. Attention is also given to 
research on transient strain response computation, dynamic response 
with unilateral contact, and buckling problems. Applications include 
hydroelasticity and elastoacoustics. 
B.J. 

a 



Prediction of the angular response power spectral density of 
aircraft structures  / Final Report, Jan. 1976 - 3un. 1978 

(AA)LEE, 3.   H.i (AB)OBAL, M., W.; (AC)BROWN, D. L. 
Air Force Flight Dynamics Lab., Wright-Patterson AFB, Ohio. ( 

AI058438) 
AD-A066141! AFFDL-TR-78-188 781200 p. 98 refs 0 In: EN (English) 
Avail.: NTIS HC A05/MF AOl  p.1932 

The design of airborne electro-optical systems requires the 
knowledge of angular vibration as well as linear vibration of aircraft 
structures. Rather than predicting the angular vibration subject to 
aerodynamic and acoustic excitations, an attempt is made here to 
relate the angular vibration directly to the linear vibration 
response. With the Bernoulli-Euler beam used as a theoretical model, a 
relationship has been derived between the linear and angular vibration 
power spectral density functions. Based on this relationship together 
with the angular root-mean-squared vibration amplitude as previously 
predicted by Lee and Whaley (AFFDL-TR-76-56, AF Flight Dynamics 
Laboratory, Wright-Patterson AFB, Ohio), it is now possible to predict 
the angular power spectral density and a length scale associated with 
the angular measurement technique. Tested on the typical flight test 
data of RF-4C and F-15 fighters, CH-3E helicopter, and B-52 bomber, 
the predicted angular power spectral density lies within a + or - 0 db 
band about the measurement. Though crude, such a prediction is useful 
in the preliminary design stage in that one can quickly estimate the 
angular vibration environment prior to fabrication. 
Author (GRA) 

Adaptive approximations in finite element structural analysis (for 
aircraft components) 

(AA)PEANO, A.; (AB)PASINI, A.; (AC)RICCIGNI, R.; (AD)SARDELLA, L. 
(AA)(Milano, Politecnico, Milan, Italy); (AD)(Istituto Sperimentale 

Modelli e Strutture, Bergamo, Italy) 
In: Trends in computerized structural analysis and synthesis; 

Proceedings of the Symposium, Washington, D.C., October 30-November 1, 
1978. (A79-22926 08-39) Oxford and Elmsford, N.Y., Pergamon Press, 
1978, p. 333-342.  780000 p. 10 refs 19  In: EN (English)  p.1420 

A finite element computer program is termed adaptive when it 
possesses a local a posteriori error estimation capability, along with 
a capability of assigning (automatically or with minimum user 
interaction) additional degrees of freedom to regions with 
particularly high accuracy requirements. The automated convergence 
process reduces the discretization error until the accuracy desired is 
obtained, thereby establishing confidence in the solution. The purpose 
of the present paper is to demonstrate, on the basis of two- and 
three-dimensional applications, an adaptive computer program capable 
of obtaining improved solutions at minimum cost. The behavior of 
p-convergent approximations at crack tip singularities is studied, and 
the implementation of adaptive finite element techniques into second 
generation large-scale computer programs is discussed. 
V.P. 

Analysis of aircraft structure using applied fracture mechanics 
(AA)WILHEM, D. P. 
Northrop Corp., Hawthorne, Calif.  (N5631231) Aircraft Group. 
In AGARD Fracture Mech. Design Methodology 17 p (SEE N79-20409 

11-39) 790100 p. 17 refs 0 In: EN (English) Avail.: NTIS HC 
All/MF AOl  p.1437 

An aircraft designed and analyzed for a particular set of usages is 
often placed in a service environment which is more severe than 
originally planned. The consequence of this occurrence is that many 
design details such as cutouts, holes, etc., are placed in a spectrum 
of loads which result in higher operating stresses. In the original 
full scale fatigue test, a different (design usage) spectrum is 
usually employed, and can only indicate fatigue critical areas. Using 
the finite element approach with stress intensity values and usage 
spectra, estimates are made of the crack growth life for a 
part-through-crack at a cutout. These data are then used to establish 
inspection intervals. Three distinct spectra were developed to 
represent usage, and analytical/experimental correlation was made for 
those spectra. In the majority of cases, good agreement was obtained. 
For these cases where the correlation is not good, refinements need to 
be made to the stress intensity solutions and/or the crack growth 
model. The reliance on more than one method of analysis is recommended 
for stress intensity evaluation of fatigue and fracture-critical 
areas. A comparison of the methods used in determining crack growth 
parameters sometimes indicates that the added cost of a more complex 
technique is not warranted, particularly when parametric design 
studies are involved. The use of a newer approach to the prediction of 
both fatigue crack growth and residual strength, employing a wide 
range resistance curve, is promising. Its usefulness in pinpointing 
differences in the cutout problem is given. 
A.R.H. 

a 

Cyclic linkage of finite elements with application (to aircraft 
structural analysis) 

(AA)ATANACKOVIC, B. 
(AA)(Aerotechnical Institute, Belgrade, Yugoslavia) 
lAF PAPER 78-213 International Astronautical Federation, 

International Astronautical Congress, 29th, Dubrovnik, Yugoslavia, 
Oct. 1-8, 1978,  20 p.  781000 p. 20 refs 8 In: EN (English)  p.98 

Two models for linking finite elements in the analysis of aircraft 
structures are proposed in which a polygonal element is the basic 
carrier of information on the structure. Information on the structure 
is obtained by optimal organization of the elements. Cyclic linkage of 
the polygonal elements is used to model two-dimensional geometric 
aircraft structures; it also provides graphical representation of 
stress and geometric data. The method is illustrated by examples. 
V.P. 



stress intensity analysis: Analytical, finite element for surface 
flaws, holes 

(AA)WILHEM, D. P. 
Northrop Corp., Hawthorne, Calif.  (N5631231) Aircraft Group. 
In AGARD Fracture Mech. Design Methodology 19 p (SEE N79-20409 

11-39) 790100 p. 19 refs 0 In: EN (English) Avail.: NTIS HC 
All/MF AOl  p.1436 

Several methods are available to obtain stress intensity for 
developing cracks in structure where uniform loading and symmetric 
cracks prevail. Unfortunately in all aircraft structure both loading 
(stress) and crack geometries are far from ideal. These factors 
combined with localized plasticity require the use of more 
sophisticated means of obtaining stress intensity factors. Finite 
element analysis, both with and without special cracked elements, can 
be used to obtain stress intensity values. Careful attention must be 
paid in modeling to account for various factors, i.e., fasteners, 
etc., which affect the stress field. In many cases where 
elastic-plastic behavior is evident, those finite element programs 
with nonlinear capability can be effectively used to compute 
J-integral values for use in both fatigue and fracture studies. One 
case study presented involves a cutout in the wing in a highly 
stressed region the root. Other cases deal with part-through-cracks at 
holes and countersinks and other design details. The use of three 
dimensional finite element models to obtain stress intensities for 
cracks at holes provides an opportunity to evaluate the merits of each 
method of analysis; analytical, finite element and semi-empirical. 
Comparisons are presented for several cases. 
A.R.H. 

Recent developments in analysis of crack propagation and fracture of 
practical materials (stress analysis in aircraft structures) 

(AA)HARDRATH, H. F.; (AB)NEWMAN, J. C, JR.; (AC)ELBER, W.; (AD)POE, 
C. C, M. 

National Aeronautics and Space Administration. Langley Research 
Center, Hampton, Va.  (ND210491) 

NASA-TM-78766 505-02-33-03 780600 p. 20 refs 0 Presented at the 
Intern. Symp. of Fracture Mechanics, Washington, D. C, 11-13 Sep. 
1978 In: EN (English) Avail.: NTIS HC A02/MF AOl  p.2828 

The limitations of linear elastic fracture mechanics in aircraft 
design and in the study of fatigue crack propagation in aircraft 
structures are discussed. NASA-Langley research to extend the 
capabilities of fracture mechanics to predict the maximum load that 
can be carried by a cracked part and to deal with aircraft design 
problems are reported. Achievements include: (1) improved stress 
intensity solutions for laboratory specimens; (2) fracture criterion 
for practical materials; (3) crack propagation predictions that 
account for mean stress and high maximum stress effects; (4) crack 
propagation predictions for variable amplitude loading; and (5) the 
prediction of crack growth and residual stress in built-up structural 
assemblies. These capabilities are incorporated into a first 
generation computerized analysis that allows for damage tolerance and 
tradeoffs with other disciplines to produce efficient designs that 
meet current airworthiness requirements. 
A.R.H. 

Fast algorithm for calculating a family of wing structures 
Bystrodeistvuiushchii algoritm rascheta odnogo semeistva kryl'evykh 

konstruktsii 
(AA)KULCHENKO, G. G.; (AB)PERVAK, V. D.; (AC)RIABCHENKO, V. M.; 

(AD)STGPKEVICH, V. G. 
Samoletostroenie - Tekhnika Vozdushnogo Flota, no. 42, 1977, p. 

68-73.  In Russian.  770000 p. 6 refs 6 In: RU (Russian)  p.999 

A fast finite-element algorithm is proposed for calculating the 
aerodynamic forces (horizontal, vertical and shear) on a wing of 
longeron-rib configuration. The computation is performed in three 
stages: (1) the static stress state is constructed on the basis of the 
theory of thin rods, (2) self-equilibrated stress states, localized on 
small sections of the wing, are chosen as extra unknowns, and (3) 
matrix coefficients are claculated. The method developed here can be 
used to calculate the wing as a whole, as well as the separate 
substructures of a complex wing. 
8.3. 

Static and dynamic analysis of helicopter structures with the finite 
element method 

Analyse statique et dynamique des structures d'helicoptres par la 
methode des elements finis 

(AA)AUDRY, R. 
(AA)(Societe Nationale Industrielle Aerospatiale, Division 

Helicopteres, Marignane, Bouches-du-Rhone, France) 
Vertica, vol. 1, no. 4, 1977, p. 255-262. In French. 770000 p. 8 

refs 5 In: FR (French)  p.745 

General-purpose programs for finite element analysis of the static 
and dynamic response of helicopters are described. The library of 
elements for the programs includes longitudinal sections acting in the 
traction/compression mode, plane surfaces acting as membranes, 
longitudinal sections capable of bending, plane surfaces capable of 
bending, and volumes. The dynamic response program is limited 
primarily by the computing time associated with the rigidity matrix. 
An application of the finite element programs to the SA 341 Gazelle 
helicopter is presented. 
J.M.B. to 



03 
Structural wing-fuselage static interaction by a combined method of to 

tests and numerical analyses (for Kfir aircraft) °^ 
(AA)KALEV, I.; (AB)BLASS, E.; (AC)BARUCH, M. 
(AB)(Technion - Israel Institute of Technology, Haifa, Israel) 
Journal of Aircraft, vol. 14, Dec. 1977, p. 1186-1191. 771200 p. 6 
In: EN (English)  p.539 

Structural wing-fuselage interaction has a major influence on the 
Kfir aircraft stress distributions. A method that combines both 
numerical computations and sparate full-scale nondestructive static 
tests of both wing and fuselage is described, and the selection of 
this approach is substantiated. The method incorporates five main 
interdependent activities: (1) performance of static tests on a 
full-scale wing; (2) performance of static tests on a full-scale 
fuselage; (3) construction of a finite-element model of the wing; (4) 
construction of finite-element models of the fuselage frames to which 
the wing is attached; and (5) computation of the wing-fuselage 
interaction, using the force method and considering the wing and the 
fuselage as two substructures. 
(Author) 
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